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ABSTRACT

We describe an approach for statistical analysis of shapes of
closed curves using tools from differential geometry. This
approach uses geodesic paths to define a metric on shape
space, that is used to compare shapes, to compute intrin-
sic statistics for a set of shapes, and to define probability
models on shape spaces. We demonstrate this approach us-
ing: (i) interpolation of heart-wall boundaries in echocar-
diographic image sequences and (ii) a study of shapes of
human silhouettes in infrared surveillance images.

1. INTRODUCTION

Detection, extraction and recognition of objects in an image
is an important area of research. Objects can be character-
ized using a variety of features: textures, edges, boundaries,
colors, motion, shapes, locations, etc. Shape often provides
an important clue for determining how an object appears
in an image. For example, we have displayed the images of
three animals in the top panels of Figure 1. The lower panels
show the silhouettes of these animals in the corresponding
images. It is easy to see that the shapes of these silhou-
ettes can help shortlist, or even identify, the animals present
in these images. Tools for shape analysis can prove impor-
tant in several applications including medical image analy-
sis, human surveillance, military target recognition, finger-
print analysis, space exploration, and underwater search.

A significant part of the past efforts has been restricted
to “landmark-based” analysis, where shapes are represented
by a coarse, discrete sampling of the object contours [1].
A recent approach [2] considers the shapes of continuous,
closed curves in R

2. In this paper we describe two appli-
cations of this idea: First, we look at a problem in ecocar-
diographic image analysis where shapes of epicardial and
endocardial boundaries are studied to determine the extent
and progression of disease in a patient’s heart. We focus on
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Fig. 1. Analysis of shapes of objects’ boundaries in images
can help in computer vision tasks such as object recognition.

the specific problem of interpolating these boundaries in im-
age sequences when an expert provides contours for the first
and last frames in the sequence. Secondly, we will present
an application involving human surveillance with a goal of
detecting humans in low-quality night-vision (infrared) im-
ages. Our goal here is to build a statistical model to capture
human shapes.

The rest of this chapter is organized as follows. In Sec-
tion 2 we summarize past work on differential-geometric
representation of shapes. In the next two sections we de-
scribe two applications of this approach.

2. A FRAMEWORK FOR PLANAR SHAPE
ANALYSIS

The basic idea presented in [2] is to identify a space of
closed curves, remove shape-preserving transformations from
it, impose a Riemannian structure on it, and treat the result-
ing quotient space as the shape space.
1. A Geometric Representation of Shapes: Consider the
boundaries or silhouettes of the imaged objects as closed,
planar curves in R

2, parameterized by the arc length. De-
note by θ(s) the angle made by the velocity vector with the
positive x-axis, as a function of arc length s. Coordinate
function α(s) relates to the angle function θ(s) according to
α̇(s) = ej θ(s), j =

√−1, with an example in Figure 2. We
choose angle functions to represent and analyze shapes. To
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Fig. 2. A closed curve (left panel), its coordinate functions
α (second panel) and its angle function θ (third panel).

build shape-invariant representations, one restricts to the set
C = {θ ∈ θ0 +L

2| 1
2π

∫ 2π

0
θ(s)ds = π,

∫ 2π

0
ejθ(s)ds = 0},

where θ0(s) = s. The first constraint removes the orienta-
tion variability from these representations, while the second
constraint ensures that the shapes are closed. This does al-
low self-intersecting curves. Furthermore, to remove the re-
parametrization group (relating to different placements of
the origin), define the quotient space S ≡ C/S

1 as the space
of continuous, planar shapes, where S

1 denotes the unit cir-
cle in R

2. C is called the pre-shape space and S is called
the shape space. It should be noted that angle functions rep-
resenting shapes are actually analyzed discretely, in view of
the discrete (pixellated) images containing those shapes.
2. Geodesic Paths Between Shapes: An important tool
in a Riemannian analysis of shapes is to construct geodesic
paths between arbitrary shapes. Klassen et al. [2] approx-
imate geodesics on S by successively drawing infinitesi-
mal line segments in L

2 and projecting them onto S. For
any two shapes θ1, θ2 ∈ S, one uses a shooting method
to construct a geodesic between them. The geodesic met-
ric is 〈g1, g2〉 =

∫ 2π

0
g1(s)g2(s)ds on the tangent space of

S. The resulting geodesic between any two shapes is the
path that uses minimum energy to bend one shape into
the other. Shown in Figure 3 are two examples of geodesic
paths connecting the two end shapes. We will use the nota-

Fig. 3. Examples of geodsic paths in S.

tion Ψt(θ, g) for a geodesic path starting from θ ∈ S, in the
direction g ∈ Tθ(S), as a function of time t. Here Tθ(S)
denotes the space of functions tangents to S at the point θ.
If g ∈ Tθ1(S) is the shooting direction to reach θ2 in unit
time from θ1, then the following holds: Ψ0(θ1, g) = θ1,
Ψ1(θ1, g) = θ2, and Ψ̇0(θ1, g) = g. The length of this
geodesic is given by d(θ1, θ2) =

√〈g, g〉.
3. Mean Shape in S: For a collection θ1, . . . , θn in S, and
d(θi, θj) the geodesic length between θi and θj , the Karcher
mean is defined as the element µ ∈ S that minimizes the

quantity
∑n

i=1 d(θ, θi)2. A gradient-based, iterative algo-
rithm for computing the Karcher mean is particularized to
S in [2].

This approach provides a comprehensive framework for
a statistical analysis of planar shapes. In the next two sec-
tions, we present some applications of this framework to
problems of practical interest.

3. INTERPOLATION OF SHAPES IN
ECHOCARDIOGRAPHIC IMAGE-SEQUENCES

Shape analysis continues to play a major role in medical
diagnostics using non-invasive imaging. Shapes and shape
variations of anatomical parts are often important factors in
deciding normality/abnormality of imaged patients. For ex-
ample, the two images displayed in Figure 4 were acquired
as the end diastolic (ED) and end systolic (ES) frames from
a sequence of echocardiographic images during systole, taken
from the apical four chamber view. Superimposed on both
images are expert tracings of the epicardial (solid lines) and
endocardial borders (broken lines) of the left ventricle of the
heart. From these four borders, indices of cardiac health,
including chamber area, fractional area change, and wall
thickness, can be easily computed.

Echo−cardiograph for a 4−C heart for 100001
A
4H0_A4H0 (ED)

Endo
Epi

Echo−cardiograph for a 4−C heart for 100001
A
4H0_A4H0 (ES)

Endo
Epi

Fig. 4. Expert generated boundaries, denoting epicardial
(solid lines) and endocardial (broken lines) borders, drawn
over ED (left) and ES (right) frames of an echocardio-
graphic image sequence.

A major goal in echocardiographic image analysis has
been to develop and implement automated methods for com-
puting these two sets of borders as well as the sets of bor-
ders for the 10-12 image frames that are typically acquired
between ED and ES. Different aspects of past efforts in-
clude both the construction of geometric figures to model
the shape of the heart as well as validation. While it is a
rare cardiologist who is willing to submit to the tedium of
drawing borders for all image frames between ED and ES,
a few will in fact agree to draw borders for the first and
last frames. Since the heart walls may exhibit diskinetic
(i.e irregular) motion patterns during systole, the tracking
of these borders may be important in a diagnosis. Our goal
is to estimate epicardial and endocardial boundaries in the
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intermediate frames given the boundaries at the ED and ES
frames.

A closed contour α has two sets of descriptors associ-
ated with it: a shape descriptor denoted by θ ∈ S and a
vector z ∈ Z of nuisance variables such as position, orienta-
tion, and scale. In our approach, interpolation between two
closed curves is performed via interpolations between their
shapes and nuisance components, respectively. The interpo-
lation of shape is obtained using geodesic paths, while that
of the nuisance components is obtained using linear meth-
ods. The implication is to use a Riemannian structure on
the joint space of shape and nuisance variables, with a Eu-
clidean metric on the nuisance space Z . Let α1 = (θ1, z1)
and α2 = (θ2, z2) be the two closed curves, and our goal is
to find a path Φ : [0, 1] �→ S × Z such that Φ0 = (θ1, z1)
and Φ1 = (θ2, z2). For example, in Figure 4, the endo-
cardial boundary (broken curves) of the ED and ES frames
can form α1 and α2, respectively. Alternatively, one can
treat the epicardial boundaries (solid curves) of ED and ES
frames as α1 and α2 as well. The different components are
interpolated as follows:

1. Shape Component: Given the two shapes θ1 and θ2

in S, we use the shooting method to find the geodesic
that starts from the first and reaches the other in unit
time. This results in the flow Ψt(θ1, g) such that Ψ0(θ1, g)
= θ1 and Ψ1(θ1, g) = θ2. This also results in a re-
parametrization of θ2 such that the origins (points where
s = 0) on the two curves are now registered. With
a slight abuse of notation we will also call the new
curve θ2. Let a shape along this path be given by
θt = Ψt(θ1, g). Since the path θt lies in S, the aver-
age value of θt for all t is π.

2. Translation: If p1, p2 represent the locations of the
initial points on the two curves, i.e. pi = αi(0),
i = 1, 2, then the linear interpolation between them is
given by p(t) = (1 − t)p1 + tp2.

3. Orientation: For a closed curve αi, the average ori-
entation is defined by φi = 1

2π

∫ 2π

0
1
j log(α̇i(s))ds,

i = 1, 2, j =
√−1. Given φ1 and φ2, a linear in-

terpolation between them is φ(t) = (1 − t)φ2 + tφ̃2,
where φ̃2 = argminφ∈{φ2−2π,φ2,φ2+2π} |φ − φ1|.

4. Scale: If ρ1 and ρ2 are the lengths of the curves α1

and α2, then a linear interpolation on the lengths is
simply ρ(t) = (1 − t)ρ1 + tρ2.

Using these different components, the resulting geodesic on
the space of closed curves is given by {Φt : t ∈ [0, 1]}
where:

Φt(s) = p(t) + ρ(t)
∫ s

0

exp(j(θt(τ) − π + φ(t)))dτ .

Shown in Figure 5 is a sequence of 11 image frames for
the same patient as displayed in Figure 4. Again, each im-
age frame has a set of epicardial and endocardial borders
overlaid on the image. In Figure 5, borders in the first and
last frames have been traced by an expert, while the bor-
ders on the intermediate frames have been generated using
the path Φt, one each for epicardial and endocardial bound-
aries. In view of the geodesic paths in S relating to the
minimum bending energy, this method provides a smoother
interpolation for the endocardial borders, as compared to a
direct linear interpolation of coordinates.

We foresee a number of uses for this idea. First, this
method could be included in an acquisition system so that
if an expert traces sets of borders at ED and ES, then the
borders for the intermediate frames can be generated au-
tomatically. As a future extension, one might modify the
proposed interpolation to include image information. That
is, formulate a boundary-value problem in S that seeks an
optimal path under an image-based energy function, while
fixing the expert generated boundaries as the end points.

4. STUDY OF HUMAN SILHOUETTES IN
INFRARED IMAGES

There is a great interest in detection and recognition of hu-
mans using static images and video sequences. Night-vision
cameras, or infrared cameras, have been found important
in human detection and tracking, especially in surveillance
and security environments. These cameras capture emissiv-
ity, or thermal states, of the imaged objects, and are largely
invariant to ambient illumination. In this section, we inves-
tigate the problem of building statistical shape models for
human silhouettes, for use in future shape detection.

Using a hand-held Raytheon Pro250 IR camera, we have
hand-generated a database of human silhouettes. Shown in
Figure 6 are some examples: the top panels show three IR
images and the bottom panels show the corresponding hand-
extracted human silhouettes. Furthermore, the database has
been partitioned into clusters of similar shapes. These clus-
ters correspond to front views with legs appearing together,
side views with legs apart, side views with leg together, etc,
and an example cluster is shown in Figure 7.

Our goal is to “train” probability models by assuming
that elements in the same cluster are samples from the same
probability model. These models can then be used for future
Bayesian discoveries of shapes or for classification of new
shapes. To train a probability model amounts to estimating
a probability density function on the shape space S, a task
that is rather difficult to perform precisely. The two main
difficulties are: nonlinearity and infinite-dimensionality of
S, and they are handled here as follows. S is a nonlinear
manifold, so we impose a probability density on a tangent
space instead. For a mean shape µ ∈ S, Tµ(S) ⊂ L

2, is a
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Fig. 5. Interpolated shapes using geodesic paths in shape space.
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Fig. 6. Top panels: Examples of infrared images of human
subjects. Bottom panels: hand extracted boundaries for an-
alyzing shapes of human silhouettes.

Fig. 7. An example of a cluster of human silhouettes.

vector space and more conventional statistics applies. Next,
we approximate a tangent function g by a finite-dimensional
vector, e.g. a vector of Fourier coefficients, and thus charac-
terize a probability distribution on Tµ(S) as that on a finite-
dimensional vector space. Let a tangent element g ∈ Tµ(S)
be represented by its approximation: g(s) =

∑m
i=1 xiei(s),

where {ei} is a complete orthonormal basis of Tµ(S) and
m is a large positive integer. Using the identification g ≡
x = {xi} ∈ R

m, one can define a probability distribution
on elements of Tµ(S) via one on R

m. The simplest model
is a multivariate normal probability imposed as follows. Us-
ing principal component analysis (PCA) of the elements

of x, determine variances of the principal coefficients, and
impose independent Gaussian models on these coefficients
with zero means and estimated variances. This imposes a
probability model on Tµ(S), and through the exponential
map (expµ : Tµ(S) �→ S defined by expµ(g) = ψ1(µ, g))
leads to a probability model on S. We term this model “Tan-
gent PCA” or TPCA.

Consider the set of 40 human silhouettes displayed in
Figure 7. For each observed shape θi, we compute a tangent
vector gi, such that Ψ1(µ, gi) = θi. Using TPCA model
we obtain a normal probability model on the tangent space
Tµ(S). Shown in Figure 8 are the mean µ (leftmost fig-
ure) and eight random shapes generated by this probability
model.

Fig. 8. Mean shape (left) and eight random shapes.

5. SUMMARY

We have presented a differential-geometric framework for
statistical analysis of shapes, and have demonstrated this
framework using two applications: medical image analysis
and human surveillance.
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