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ABSTRACT

We consider parametric statistical models in which the parameter
space Θ is a connected Riemannian manifold. This mathematical
structure on the parameter space subsumes, as special cases, sub-
manifolds of Euclidean spaces appearing in parametric estimation
scenarios with a priori smooth deterministic constraints, and quo-
tient spaces (such as Grassmann manifolds) which arise in certain
parametric estimation scenarios with ambiguities. The Rieman-
nian structure on the parameter space Θ turns it into a metric space
and the associated Riemannian distance is used here to quantify
estimation errors. We present the Intrinsic Variance Lower Bound
(IVLB) which places a lower limit on the accuracy, measured in
terms of the mean-square Riemannian distance, of unbiased esti-
mators taking values in Θ. The IVLB depends both on the cur-
vature of the parameter space and a coordinate-free extension of
the well-known Fisher information matrix (FIM). We show that
for flat Euclidean spaces, the IVLB collapses to the Cramér-Rao
Bound (CRB). In this sense, we may interpret the IVLB as a gen-
eralization of the CRB for curved parameter spaces. Computer
simulations illustrating the application of the IVLB are included.

1. INTRODUCTION

Let F = {p(y; θ) : θ ∈ Θ} denote a parametric statistical model
for the observed data vector y ∈ R

n. That is, F stands for a collec-
tion of probability density functions with respect to the Lebesgue
measure dy in R

n. The statistical family F is indexed by the pa-
rameter θ ∈ Θ. The Cramér-Rao bound (CRB) [1, 2] is usually
invoked in these setups to determine a fundamental limit on the
accuracy of unbiased estimators. In the original theoretical de-
velopment of the CRB it is assumed that the parameter space Θ
represents an open subset of some Euclidean space R

p. However,
in many parametric estimation setups, one faces more sophisti-
cated parameter spaces. Illustrative examples occur in (i) paramet-
ric estimation with constraints and (ii) parametric estimation over
quotient spaces. In scenario (i), it is often the case that the param-
eter space Θ becomes an embedded submanifold of an Euclidean
space, due to some a priori smooth deterministic constraints on
the parameter θ, e.g. Θ is an ellipsoid, the special orthogonal
group, etc [3, 4]. Case (ii) may arise in overparameterized statis-
tical models or in parametric estimation affected by intrinsic am-
biguities. For example, in single-input multiple-output (SIMO)
blind channel identification based on 2nd order statistics, it is well
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known that the channel is only identifiable modulo a phase fac-
tor. Consequently, the “right” parameter space should be the quo-
tient space Θ/ ∼ obtained by quotienting out equivalent channels
(i.e., differing only by a phase factor) in Θ, the original parame-
ter space. Thus, conceptually, one switches from the identification
of a channel (an ill-posed problem due the inherent phase ambi-
guity) to the identification of its equivalence class (a well-posed
problem). This viewpoint has also advantages in practical identi-
fication algorithms as first noticed by Manton [11]. In the context
of performance analysis, see [10] for other applications of such
constructions.

Previous work. To tackle such sophistications in the structure
of the parameter space Θ several generalizations of the CRB have
been proposed. The works in [3, 4] address case (i) above, whereas
[8] can cover both cases (i) and (ii) because it unifies their treat-
ment by assuming that the parameter space Θ is a generic differen-
tiable manifold (that is, not necessarily given as a submanifold of
an ambient Euclidean space). However, no metric structure on Θ
is assumed in [8]: the covariance inequality derived therein does
not translate in a quantitative statement concerning the accuracy
(measured in terms of some distance on Θ) of unbiased estima-
tors. We introduced a preliminary version of the Intrinsic Variance
Lower Bound (IVLB) in [9]. Similar to [8], the work in [9] as-
sumes Θ to be a generic manifold and thus can be applied to cases
(i) and (ii). However, it assumes Θ to be endowed with an extra
piece of structure: a Riemannian layer. The existence of the Rie-
mannian structure on Θ turns it into a metric space (the distance
is induced from the Riemannian layer) and this canonical Rieman-
nian distance can be used to measure the precision of estimators
taking values in Θ: the magnitude of an estimaton error corre-
sponds to the Riemannian distance between the “true” (unknown)
family member θ ∈ Θ and the estimated point θ̂(y) ∈ Θ (here,
θ̂(y) denotes a realization of an estimate of θ through the estima-
tor θ̂ : R

n → Θ). The preliminary version of the IVLB discussed
in [9] establishes a lower-bound for the mean-square distance of
unbiased estimators taking values in Θ. A clear drawback of the
IVLB in [9] is the presence of an information gap relative to the
CRB. More precisely, when applied to the special case of flat Rie-
mannian manifolds, e.g., Euclidean spaces, the IVLB does not co-
incide with the Cramér-Rao bound: the CRB is more informative.

Contribution. In this paper, we improve our previous results in [9]
by presenting a much tighter version of the IVLB. Contrary to the
IVLB discussed in [9], this new version now coincides with the
CRB for flat Riemannian manifolds. For generic curved spaces,
it is substantially more informative than the previous version: a
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particular example involving the unit-sphere illustrates this.

Paper organization. Section 2 reviews the generalizations of fa-
miliar statistical concepts such as mean, variance, Fisher informa-
tion matrix, etc, to the Riemannian-geometric framework adopted
herein. These concepts are used to formulate the IVLB in section 3
for parameter spaces Θ having a Riemannian structure. We also
show that the IVLB coincides with the CRB for Euclidean spaces,
thus closing the previous information gap. In section 4, we assess
the tightness of the IVLB by examining an instance of case (i):
parametric estimation with constraints. We consider an inference
problem on the unit-sphere in order to make a direct comparison
with the preliminary version of the IVLB in [9]. In section 5, we
illustrate the IVLB in a parametric estimation scenario belonging
to case (ii), namely, we consider subspace estimation from array
data as an estimation problem posed on the Grassmann manifold.

2. PARAMETRIC ESTIMATION:
RIEMANNIAN-GEOMETRIC FRAMEWORK

In this section, we briefly review the main concepts involved in
parametric estimation from the perspective of Riemannian geom-
etry (familiarity of the reader with basic concepts in Riemannian
geometry is assumed [5, 6, 7]). More detailed expositions can be
found in [8, 9]. Essentially, we review intrinsic (coordinate-free)
extensions of familiar statistical objects. These are used in the
formulation of the IVLB in the next section. For objects used in
classical differential-geometry (e.g., tangent spaces, vector fields,
etc) we (mostly) adhere to the notation in [5].

Tensors and traces. Let V be a finite-dimensional vector space
over R, with dim V = m. A tensor Φ on V of type (k, l) is a
multilinear map

Φ : V × · · · × V︸ ︷︷ ︸
k copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

→ R,

where V ∗ stands for the dual space of V (the vector space of linear
functionals on V , or, covectors). The trace of a (1, 1)-tensor Φ is
defined as tr Φ =

∑m
i=1 Φ(Xi, ωi), where {X1, X2, . . . , Xm}

and {ω1, ω2, . . . , ωm} denote any pair of dual basis in V and
V ∗, respectively, i.e., ωj(Xi) = 1 if i = j and ωj(Xi) = 0
if i �= j (the definition of tr Φ is independent of the particular
choice of basis). An inner product on V is a (2, 0)-tensor Φ on V
which is symmetric (Φ(X, Y ) = Φ(Y, X)) and positive-definite
(Φ(X, X) ≥ 0 with equality if and only if X = 0). An inner-
product Φ provides a canonical identification between V and V ∗:
to each vector X ∈ V corresponds the covector Φ�(X) ∈ V ∗ de-
fined by (Φ�(X))(Y ) = Φ(X, Y ) for all Y ∈ V . The correspon-
dence Φ� : V → V ∗ is, in fact, a linear isomorphism. Its inverse
map is denoted by Φ� : V ∗ → V . Let Φ be an inner-product; we
define the (0, 2)-tensor Φ−1 : V � × V � → R as Φ−1(ω, σ) =
Φ(Φ�(ω), Φ�(σ)). Let g be another inner-product on V (to be
viewed as the “basic” inner-product). We define the trace of Φ−1

with respect to g, written trgΦ−1, as the trace of the (1, 1)-tensor
which operates as (X, ω) ∈ V × V ∗ �→ Φ−1(g�(X), ω). One
has the following result: if {X1, X2, . . . , Xm} is any basis for V ,
then

trg Φ−1 = tr
(
M−1

Φ Mg

)
, (1)

where MΦ and Mg are the m×m positive-definite matrices whose
(i, j)th entry is given by Φ(Xi, Xj) and g(Xi, Xj), respectively

(note that the symbol tr on the right-hand side of (1) denotes the
usual trace of matrices).

Intrinsic mean and variance. Let θ̂ : R
n → Θ be an estimator.

The intrinsic mean of θ̂ with respect to p(· ; θ), written Eθ{θ̂}, is
the global minimizer (we assume uniqueness) in Θ of the mean-
square Riemannian distance function φ : Θ → R,

φ(η) = Eθ{d(η, θ̂(y))2} =

∫
Rn

d(η, θ̂(y))2 p(y; θ) dy,

where d : Θ × Θ → R stands for the Riemannian distance on Θ.
This intrinsic notion of mean-value is also called Fréchet mean
or Riemannian center of mass [12]. Note that, by construction,
Eθ{θ̂} is always a point in the manifold Θ. The intrinsic variance
of θ̂ with respect to p(· ; θ) is given by

varθ{θ̂} = Eθ

{
d

(
Eθ{θ̂}, θ̂(y)

)2
}

=

∫
Rn

d
(
Eθ{θ̂}, θ̂(y)

)2

p(y; θ)dy.

Note that these definitions coincide with the usual notions of mean
value and variance when Θ is an Euclidean space with d as the
usual Euclidean distance. An estimator θ̂ is said to be unbiased if
Eθ{θ̂} = θ for all θ ∈ Θ.

Fisher information form. For y ∈ R
n, we define the log-likelihood

function ly : Θ → R, ly(θ) = log p(y; θ), assumed smooth
in θ. For each θ ∈ Θ, the Fisher information form, written Iθ , is
the (2, 0)-tensor on TθΘ (the tangent space to the manifold Θ at
θ) given by

Iθ(Xθ, Yθ) = Eθ{XθlyYθly} =

∫
Rn

(Xθly) (Yθly) p(y; θ) dy,

(2)
where Xθ and Yθ denote tangent vectors in TθΘ. Recall that Xθly
represents the directional derivative of ly at θ, taken in the direction
defined by the tangent vector Xθ [5]. For each θ, we assume that
Iθ denotes an inner-product on TθΘ; in particular, the (1, 1)-tensor
I−1

θ is defined (note that the Riemannian metric tensor g plays the
role of the “basic” (fixed) inner-product on TθΘ).

3. IVLB

We now state our main result.

Theorem (IVLB). Let the sectional curvatures of the Rieman-
nian manifold Θ be bounded above by the constant C ≥ 0. Let
θ̂ : R

n → Θ denote an unbiased estimator and assume that,
for each θ ∈ Θ, there exists ε > 0, such that

√
Cε <

√
2

and Probθ

{
θ̂(y) ∈ Vθ

}
= 1, where Vθ is a ε−uniformly normal

neighborhood of θ ∈ Θ. Then,

varθ

(
θ̂

)
≥

⎧⎪⎪⎨
⎪⎪⎩

λθ , if C = 0

λθC + 1 −√
2λθC + 1

C2λθ/2
, if C > 0

where
λθ = trg I−1

θ . (3)
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The proof is omitted due to paper length restrictions (can be found
in the companion paper [14]). We recall [9] that an open set Vθ

is a ε−uniformly normal neighborhood of θ if it contains θ and,
for all p ∈ Vθ , the geodesic ball centered at p with radius ε cov-
ers Vθ . This technical condition is certainly the main limitation
of the IVLB both theoretically (it is usually difficult to check) and
in practice: loosely, it means that the IVLB can only be applied to

“accurate” enough estimators since it implies that d
(
θ, θ̂(y)

)
< ε

with probability 1 with respect to p(· ; θ). However, Cramér-Rao
bounds are usually applied to asymptotic regimes (high signal-to-
noise ratios, large data samples, small errors, etc) in which this
technical condition is “almost” fulfilled. Note that

λθC + 1 −√
2λθC + 1

C2λθ/2
→ λθ as C → 0+.

Thus, there is no discontinuity in the IVLB as we pass from curved
spaces (C > 0) to flat spaces (C = 0).

Comparison with the CRB for flat spaces. Let Θ be the Eu-
clidean space R

p (the following discussion also holds if Θ is some
open, connected subset of it). Assuming the usual geometry, R

p

is a flat space (sectional curvatures vanish everywhere) and we
have d(θ, η) = ‖θ − η‖ for θ, η ∈ R

p (‖ · ‖ is the usual Eu-
clidean norm). For any unbiased estimator θ̂, the IVLB yields

the inequality varθ

(
θ̂

)
= Eθ{‖θ̂(y) − θ‖2} ≥ tr I−1

θ , where

Iθ : TθR
p × TθR

p → R is the (2, 0)-tensor defined in (2). It
is well known that TθR

p can be naturally identified with R
p, by

associating to a = (a1, a2, . . . , ap) ∈ R
p the directional deriva-

tive (i.e., an element of TθR
p) which acts on smooth functions

f on R
p as

∑p
i=1 ai ∂f

∂xi (θ), see [5]. Equivalently, this means

that for each tangent vector Xθ ∈ TθR
p there is an (unique)

a = (a1, a2, . . . , ap) ∈ R
p such that Xθf = aT∇f(θ) for all

smooth functions f defined on R
p (here, ∇f(θ) denotes the gradi-

ent of f evaluated at θ). We let the notation Xθ ∼ a represent this
identification. Let Xθ ∼ a and Yθ ∼ b. Within this identification,
we have

Iθ(Xθ, Yθ) = aT Eθ{∇ log p(y; θ)∇ log p(y; θ)T } b = aT I(θ)b,

where I(θ) stands for the usual Fisher information matrix. Note
also that g(Xθ, Yθ) = aT b (recall that g stands for the Riemannian
inner-product on R

p). Thus, if we choose an orthonormal basis
{q1, q2, . . . , qp} for R

p, the result in (1) asserts that

tr I−1
θ = tr

(
M−1

Iθ

)
= tr

(
(QT I(θ)Q)−1

)
= tr

(
I(θ)−1) ,

where Q = [ q1 q2 · · · qp ] (note that because the basis was chosen
to be orthonormal, we have Mg = Ip, the p × p identity matrix,

in (1)). In sum, the IVLB yields varθ

(
θ̂

)
≥ tr

(
I(θ)−1

)
, which

is precisely the CRB bound for the mean-square error of θ̂.

4. PARAMETRIC ESTIMATION WITH CONSTRAINTS

We re-examine the inference problem on the unit-sphere S
n−1 dis-

cussed in [9], in order to appreciate (through a simple example)
the improvement introduced by the new version of IVLB as com-
pared with the one in [9]. The parameter space Θ is the unit-sphere

S
n−1 = {θ ∈ R

n : ‖θ‖ = 1} and we observe y = θ + w ∈ R
n

where w ∼ N (0, σ2In) is the observation noise. Here, N (µ, Σ)
is the Gaussian distribution with mean µ and covariance Σ. The
Riemannian geometry of Θ = S

n−1 is assumed to be induced
by the ambient Euclidean space; as a consequence, the Rieman-
nian distance between θ, η ∈ Θ is given by d(θ, η) = acos(θT η)
and the sectional curvatures are everywhere equal to 1, see [5, 7].
For unbiased estimators θ̂, the preliminary IVLB introduced in [9]
yields the inequality

varθ

(
θ̂
)
≥

4 + 3/σ2 −
√

1
σ2 (9/σ2 + 24)

8
3

, (4)

see equation (16) in [9]. For the new version of IVLB, it can be
seen (details omitted) that λθ in (3) is given by λθ = (n − 1)σ2.
Moreover, we can take C = 1 as a bound on the sectional curva-
tures of Θ. In sum, the new version of the IVLB yields

varθ

(
θ̂
)
≥ (n − 1)σ2 + 1 − √

2(n − 1)σ2 + 1

(n − 1)σ2/2
. (5)

Inspection of the old version of the IVLB in (4) reveals that the
dimension of the manifold Θ (which is n−1) does not play a role.
Indeed, the right-hand side of (4) does not change as n increases.
This is in clear contrast with the new version in (5). In intuitive
(loose) terms, the new version improves upon the old one because
it takes into account the whole tangent space, whereas the previous
version only considered a one-dimensional subspace in it.

We performed computer simulations to compare both bounds
in (4) and (5) with the performance of the (unbiased) estimator
θ̂ : R

n → Θ, θ̂(y) = y/ ‖y‖. We considered the case n = 10.
A nominal point θ0 ∈ S

n−1 was previously randomly generated
and kept fixed during all Monte-Carlo experiments. We consid-
ered scenarios from SNRmin = −10 dB to SNRmax = 25 dB,
where SNR = ‖θ‖2/E

{‖w‖2} = 1/(nσ2). For each SNR, we
considered M = 1000 statistically independent experiments and
varθ0(θ̂), the variance of θ̂ with respect to p(· ; θ0), was taken

as as the mean value of d(θ0, θ̂(ym))2 = acos
(
θT
0 θ̂(ym)

)2

,

m = 1, 2, . . . , M, where ym denotes the mth realization of the
observation vector y. Figure 1 plots the result of the experiments.
The first (top) solid line corresponds to varθ0(θ̂). The solid line
with circles corresponds to the new IVLB in (5). The dashed line
with squares corresponds to the old IVLB in (4). As seen, the new
version of the IVLB provides a much tighter bound which coin-
cides, asymptotically with SNR, with the variance of θ̂.

5. PARAMETRIC ESTIMATION OVER QUOTIENT
SPACES

To assess the tightness of the IVLB in a scenario belonging to case
(ii), we consider a simplified subspace estimation problem. Let
y(k) = Us(k) + w(k) (k = 1, 2, . . . , K) denote array snapshots
where U ∈ R

N×P is an unknown orthonormal frame (UT U =
IP ), s(k) ∈ R

P is a vector of i.i.d. zero-mean, unit-power, Gaus-
sian sources and w(k) ∈ R

N represents zero-mean, white Gaus-
sian observation noise with power σ2. Both the sources and noise
are assumed to be white in the temporal and spatial domains. The
goal is to estimate the matrix U from the observed data vector
y =

(
y(1)T , y(2)T , . . . , y(K)T

)T ∈ R
NK . Thus, the parameter
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Fig. 1. varθ0(θ̂) (solid), new IVLB (solid,circles) and old IVLB
(dashed,squares)

space is Θ = {U ∈ R
N×P : UT U = IP } (a Stiefel manifold).

However, as the data vector is distributed as N (0, C(U)), where
C(U) = IK ⊗ (

UUT + σ2IN

)
, (⊗ denotes Kronecker product)

we see that C(U) = C(UQ) for any P × P orthogonal matrix
Q. Thus, only the subspace spanned by U is identifiable from y.
The “right” parameter space is thus G(N, P ) the Grassmann man-
ifold of P -dimensional subspaces in R

P , see [5, 7]. See [13] for a
more involved study on Grassmann spaces. We let [U ] denote the
subspace spanned by U . We consider the case N = 4, P = 2,
K = 10. It can be shown (details omitted) that the Riemannian
distance is given by d([U ], [V ]) =

√
(acos(σ1))2 + (acos(σ2))2,

where σ1, σ2 are the singular values of UT V . Also, C = 2 can
be used as an upper-bound on the sectional curvatures of Θ =
G(4, 2). To perform the simulations, we first randomly gener-
ate an N × P orthonormal matrix U0, to which corresponds the
point θ0 = [U0] in the parameter space Θ = G(N, P ). The ma-
trix U0 was kept fixed during the simulations, in which we var-
ied the SNR from SNRmin = 0 dB to SNRmax = 35 dB, where
SNR = E{‖U0s(k)‖2}/E

{‖w(k)‖2} = P/(Nσ2). We com-
pared the IVLB (computation of λθ0 is straightforward but omit-
ted here due to lack of space) with the performance of the SVD
estimator θ̂; more precisely, θ̂(y) = [Û ], where Û is the N × P
orthonormal matrix containing the P singular vectors associated
with the largest P singular values of R̂y = 1

K

∑K
k=1 y(k)y(k)T .

Figure 2 plots the result of the experiments. We see that the IVLB
provides a reasonably tight bound for the observed mean-square
Riemannian distance of the SVD estimator.
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