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1. INTRODUCTION

Turbo[2] and LDPC (Low-Density Parity Check) codes[3,
6] are simple and new type of error correction codes which
give a powerful and practical performance of error correc-
tion. Although experimental results show their efficacy, fur-
ther theoretical analysis is necessary, which is not straight-
forward. We have built unified framework of turbo and
LDPC codes based on information geometry[1]. The frame-
work helps our intuitive understanding of the codes and opens
a new prospect of further analysis. We have revealed some
properties of these codes in the proposed framework[4]. This
paper summarizes the results.

2. INFERENCE PROBLEM AND INFORMATION
GEOMETRICAL FRAMEWORK

2.1. Unified View

First, we give the unified view of turbo and LDPC codes.
Let � � �������� , and the ultimate goal of both of the
codes are to compute �� �

�
�
���� where ���� is the

distribution of � � ���� � � � � �� �� , defined as

���� � � ��������� � ����� � � � �� �����	�

here, ����� consists of linear term of ����, and ����� in-
cludes higher order terms of ����. We restrict ourselves to
the case �� is binary, but generalization to multiple symbols
is easy[5]. The forms of ����� are different in each code.
The direct computation of �� is not tractable, and both of
the codes utilizes the following distributions
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�� is a factorizable distributions, and if we can choose �� to
be equal to

�
� �����, then �� �

�
�
�����
�� � �� , and
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the exact decoding is possible. But generally, both codes
only gives an approximation. In the following two subsec-
tions, we show that turbo and LDPC codes are formulated
in this framework.

2.2. Turbo Codes
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Fig. 1. Turbo codes

Let� � �������� be the information bits, from which
the turbo encoder generates two sets of parity bits, �� �
����� � � � � ����

� , and �� � ����� � � � � ����
� , ��� � ��� �

������� (Fig.1). Each parity bit is expressed in the form�
�����

��, �	 � �� ��, where ��� � ��� � � � � 
�. The
codeword ��������� is transmitted over a noisy channel,
which we assume a BSC (binary symmetric channel) with
flipping probability � � �
�, and � ��� ���� ����, ���� ���� � ���� �
������� are received.

Let us consider the form of the distribution ���� ��� ���� ����.
From the assumption of the memoryless channel,

����� ���� ������ � � ����� �� � �� � ��� � �� � � ��� � ��	

� �
�

�
��� 
������

where ‘�’ denotes the inner-product. By assuming the uni-
form prior on �, the posterior becomes

������� ���� ���� �
����� ���� �������
�
����� ���� ������

(1)

� � ����� �� � �� � ��� � �� � � ��� � ��	

� � ��������� � ����� � �����	�

� is the normalizing factor, and ����� � � ����, ����� �
� ��� ���, �	 � �� ��. The MPM decoding is to compute the
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signs of �� �� � �� � � � � �� defined as

� � ���� � � � � �� �� �
�

�
�������� ���� �����

The direct computation of � is intractable. Turbo codes uti-
lize two decoders. Each of them gives the soft decoding
based on one of the two sets of the parity bits. For the soft
decoding, the following ����� �� �� � �� �� is used.

����� ��� � ��	
����� � ����� � �� � �� �������� (2)

�� � �� � ������ � 
�
�

�
��	
����� � ����� � �� � ���

This distribution is derived from �� ��� ������ and the prior of
� which has the form of

	��� �� � ��	
� � �� ������ ���� �
�
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The final decoding is obtained as �������, where
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2.3. LDPC Codes
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Fig. 2. Structure of LDPC codes.

The structure of LDPC codes is shown in Fig.2. � �
���� � � � � �� �� , �� � ��� ��, is the information bits. The
parity check matrix is

� � �
��� � ��� ���� � � ��� ����� �

�� � ��� ����� and �� � ��� ����� are sparse and ��

is invertible in mod 2. The code � � ���� � � � � �� �� is
generated with �� � ��� ����� as

� � �� �� �� �

�
��

���
�
��

�
��� ��

where �� is an identity matrix of size � . The first �
bits of � are identical to �, and � is sent through a channel.
We assume a BSC with bit-error rate �. Codeword � is
disturbed and received as ��. Let � � ���� � � � � �� �� , �� �
��� �� be the noise vector, and received codeword �� is

�� � �� � ��� ��

In the decoding, noise vector � is estimated, which yields
an estimate of �. In the decoding process, � is used. Syn-
drome vector � � ���� � � � � ���� is defined as

�� � � �� � ������� � �� � ���� ��� ��

The decoding is to infer � that satisfies �� � ����.
In the followings, we treat �, �, ��, ��, and � in the bipo-

lar (�������) form while �� and � are still in the binary
form. Each �� of ���� is written as a monomial in �:

����� �
�
����

�� � �� � �� � 
�� � ���

We consider the distribution of �� conditioned on �

������� � ��	
��� � �����������

� ��	
����� � � � �� ������������� (3)

����� ����������� � � �� � � ��

where a positive number � is introduced. We discuss the
“soft constraint” which infers� based on �� �����. The LDPC
decoding algorithm generally uses the “hard constraint” �� �
����. But as � becomes larger, both becomes equivalent.

The noise � is bitwise independent, and its error rate is
� � �������� ������. Let 	���� be defined as follows

	���� � ��	
��� � �������� � ��	
������������

����� ���� � ��

As a result, the posterior distribution becomes

������� �� ��	
����� � ����� � � � �� �������

The goal of the LDPC codes is also the MPM decoding, that
is to compute � �

�
�
��������.

In the LDPC decoding, ����� ��� (� � �� � � � ��), which
is composed of �������� and prior 	��� ��� is used. We have

�������� � ��	
������ ������

	��� ��� � ��	
���� � ��� � �� ����� � �����

����� ��� � ��	
����� � ����� � �� � �� ��������

������ � 
�
�

�
��	
����� � ����� � �� � ��� �� � �� �

Now, we have shown that both of the codes are summarized
with the unified view.

3. INFORMATION GEOMETRICAL VIEW

3.1. Preliminaries of Information Geometry

Let us first define the family of distributions �.

� �
�
������	� � ��	
����� � ���� 	�
���� ����	���

� � ���	 � ��
�
� (4)
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here � � ���� � � � � ���
� , � � ���� � � � � ���

� , and ���� �
������� � � � � ������

� . � is an exponential family, where
����� is the natural parameter. Next, let us define a sub-
manifold �� � � as

�� �
�
������� � ����������� ��������	

�� � � ��
�
�

Each component is independent for the distributions of � �

and
��

��� 	�
�� � ��. There exists a �, s.t., ������� ���

��� 	�
��. We define the �– and �–flat submanifolds.

�–flat submanifold: Submanifold��� is �–flat, if 
��� ��
belongs to � for all � � �
� �	, 	���� ���� �� .

�
 
��� �� � ��� �� �
 	��� � � �
 ���� � �����

�–flat submanifold: Submanifold��� is�–flat if 
��� ��
belongs to � for all � � �
� �	� 	���� ���� �� .


��� �� � ��� ��	��� � ������

From its definition,�� is �–flat. Next, we define�–projection
to an �–flat submanifold.

Definition 1. Let � be an �–flat submanifold in �, and let
	��� � �. The distribution in � that minimizes the KL–
divergence from 	��� to � is denoted by

��Æ	��� � �����

������

��	���� ����	� (5)

and is called the �–projection of 	��� to � .

��	� �	 is the Kullback-Leibler divergence defined as

��	���� ����	 �
�

�
	��� �


	���

����
�

Finally, the �–projection theorem follows.

Theorem 1. Let � be an �–flat submanifold in � and let
	��� � �. ��Æ	��� is unique.

Now, we show that marginalization of 	��� is equivalent
to �–projection from 	��� to ��. Let �� be the natural
parameter of �� which corresponds to the �–projection of
	��� to ��. From eq. (5),

������
�� � ���

Æ 	����

��
���
� ���

Æ 	��� � �����

�

��	���� �������	�

Take the derivative of ��	���� �������	 with respect to �,
and we have

�
� �	���� ������

�� � �� (6)

We have the following relation

������� � �� �

�

� ��������� �� ��	 �
�

� ���������

Now, we define ����� as the expectation parameter of ��,

����� �
�

� �������� � ��������

Since � and �� has one-to-one relation, the �–projection
from 	��� to �� is equivalent to marginalization of 	���.

3.2. Decoding Algorithms

Let us define the following submanifolds

�� �
�
����� ���

�� �� � ��
�
�

����� ��� � ��������� � ����� � �� � �� ������	�

�� � ��� 
 � �� � � � � ��

����� ��� is an exponential family which includes �����.
Its natural and expectation parameters are �� and ������,
respectively, and defined as follows

������ � ��������� �
�

� ������ ���� 
 � �� � � � � ��

Computation of ������ and ���
Æ ����� ��� is possible for

every �� � ��. Using �������� and ����� ���� 
 � �� � � � � �,
we can rewrite the decoding algorithms as follows[4],

Decoding algorithms

1. Set ��� � �, ��� � �, 
 � �� � � � � �.

2. Increase � by 1 and update � ���� as follows

����� � ���
Æ����� �

�
��� ���� (7)

3. Update ���� and ����� as follows

����� �
�
�� ���

������ ������
�
�

����� �
�

�� �

�
�

����� �

4. Repeat 2 and 3 until the convergence.

In turbo codes, � � � and step 2 updates one of ���� �	�
iteratively, while in LDPC codes, � is large all of ���� are
updated simultaneously. In the following, we denote the
parameters at the convergent as ��, �����, and �����. Note
that �� � ��� � ��� holds throughout the algorithm.

3.3. Equilibrium

Theorem 2. [4] The equilibrium ���� ������ satisfies

�–condition: �� � ���
Æ ����� �

�
� �.

�–condition: �� �
�

�� �

��

��� �
�
� .

From eq. (7) and �� � ��� � ��� , it is clear that �–
condition is satisfied, and �–condition is clear from step 3.
Next, we define two submanifolds � � and �� in �.

�� �
�
����

���
�
�

����� �
�
�

�������
�� � ����

��
�
�

�� �
�
���������������

����
��
���

����� �
�
� �
��

���
��
���

����
�
�
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�� and �� are an �–flat and an �–flat submanifolds, re-
spectively. From the definition,� � includes ��������, and
�� includes �������� and ����� ��� �, � � �� � � � � �. Now,
2 conditions are redefined as follows,

�–condition: � � includes ����� ��� �, � � �� � � � � �.

�–condition: �� includes ����.

The �–condition is easily checked and �–condition is also
checked by setting 	� � ���� ��, 	� � � � � � 	� � �.

At the equilibrium, �– and �–conditions are satisfied.
If ���� is included in � �, the decoding result is exact, but
���� is only included in ��, and � � differs from ��.

3.4. Perturbation Analysis

We have analyzed the accuracy of these decoding algorithms
based on the perturbation analysis[4]. In the following dis-
cussion, we use �������� in eq. (4). From the definition,
�������, ����� ���, and ���� � 
. The partial expectation
parameter is

������ � �������� �
�

�
���������


We now restrict �������� to belong to� �. In other words,
we set the parameters to satisfy the following equation

������ � ������� � �����


Under the constraint, � is a function of �, as ����. We
analyze how � changes from ��, as � moves from � to ��.

In the perturbation analysis based on the second order
expansion, we used the following two equations.

� �
�

��
������ �

��

��

��

��
�

��

��



� �
��

����
������

� �
���

����

��

��
�

���

����

��

��

��

��
�

��

��

���

����
�

���

����
�

which yields

��������
��

��

���
���

��
�

�
��

���

����

���
���

� � ���������

���� ������
����

�

�
�� ���

�
��������������
 (8)

Here, ���� � ���
�

��������� and � � �
��

� ������
�� �

��
.

For simplicity, we denote the ��� �� component of � � as
��� � ����. Here, even if �������������� � � holds,
generally ������� �� �.

So far, we have only considered the �–condition. Now,
we move to the �–condition. The condition is

�� � �
��

�����
�
� � ���


Since ��� � �����, eq. (8) gives

��� � �� �� ������
���� �

�

�
���
�

����������
��

�� � ������
���� �

�

�
���
�

����
�

�

������
��
 (9)

Now we have the following approximation

������ �� � � ������
���� �

�

�
���
�

����
�

��

������
��


����� � �
�

�
���
�

����
�

� ��� ������
��
 (10)

This yields the following theorem

Theorem 3. Let the expectation of � w.r.t ���� be �� �
�������. And we have the following approximation,

�� � ����� �
�

�

�
� ��� ������

��


When every ����� is a monomial of ����, we further
have the following result.

Theorem 4. [7] When any pair ����� and ������, does not
have more than one common ��,

�
� ���������

������.

4. CONCLUSION

We have shown our information geometrical framework of
turbo and LDPC codes. Base on the framework, we have
shown the perturbation analysis result. We also have stud-
ied the local convergence properties and analysis of related
algorithms in [4, 5].
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