
QUANTIZATION ON THE GRASSMANN MANIFOLD: APPLICATIONS TO PRECODED
MIMO WIRELESS SYSTEMS

Bishwarup Mondal, Robert W. Heath Jr. ∗

The University of Texas at Austin
{mondal,rheath}@ece.utexas.edu

Leif W. Hanlen †

National ICT Australia
leif.hanlen@nicta.com.au

ABSTRACT

This paper studies the problem of quantization of a source that
lives on the complex Grassmann manifold. The special structure
of the Grassmann manifold and the distortion measures that are
defined on it differentiates this problem from the traditional prob-
lem of vector quantization in Euclidean spaces. Assuming a uni-
form source distribution along with a distortion based on chordal
distance, codebook design algorithms are mentioned and rate dis-
tortion tradeoffs are studied. The expected distortion for such a
quantizer is approximately characterized. These results are then
applied to the performance analysis of a multiple antenna wireless
communication system.

1. INTRODUCTION

The Grassmann manifold has been explored by the signal process-
ing community in diverse contexts - optimization, estimation and
channel coding among others. The problem of quantization on
the Grassmann manifold, on the other hand, has received less at-
tention. Recently, quantization problems on the Grassmann mani-
fold have generated interest, partly due to applications in multiple-
input multiple-output (MIMO) wireless communication. The de-
sign and analysis of quantizers on the Grassmann manifold, which
exploit the geometrical structure of the manifold, is the topic of
this present paper.

The geometrical exposition of the Grassmann manifold pre-
sented here is from the viewpoint of computational linear algebra
(see e.g. [1]). Let Un be the unitary group defined as the set of
n-by-n unitary matrices. Let Vn,p be the Stiefel manifold that is
the set of all p-dimensional bases in an n-dimensional space. The
Grassmann manifold Gn,p is a quotient manifold and may be de-
fined as the set of all p-dimensional subspaces of an n-dimensional
space. An element of Gn,p can be identified by those bases in Vn,p

that span the same subspace. An n-by-p orthonormal matrix can
represent a p-dimensional basis in n-space. Thus, points in the
Grassmann manifold are equivalence classes of n-by-p orthonor-
mal matrices (two matrices are equivalent if their columns span the
same subspace). In quotient notation, Gn,p = Vn,p/Up.

A point in Gn,p is a p-dimensional linear subspace and may
be represented by an arbitrary basis in the form of an n-by-p or-
thonormal matrix. The matrix representation of a point in Gn,p is
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non-unique and Y ∈ Gn,p (Y orthonormal) essentially means that
the column space of Y is an element of Gn,p.

Let us consider a random matrix source Y , where Y is n-by-p
and orthonormal. We use the same notation for the random matrix
as well as a realization of it. Considering Y as an element of the
Euclidean space �n×p, we can define a quantizer Q of size N as
a map 1

Q : �n×p �→ W, where W = {Y1, · · · , YN}, Yi ∈ �n×p. (1)

The setW is a codebook of size N and each element is a codeword
or a reproduction point. The resolution or rate of the quantizer is
given by log2 N/(2np). This is a traditional definition of a quan-
tizer in the Euclidean space [2]. To measure the performance of
the quantizer Q, we define distortion d as a map

d : �n×p × �
n×p �→ �

+ ∪ {0} (2)

and a performance metric for the quantizer is the expected distor-
tion given by E{d(Y,Q(Y ))}, where the expectation is over the
domain of definition of the source Y .

Now let us consider the case when (i) W = {Y1, Y2 · · · , YN},
Yi orthonormal, and (ii) d(Y,Q(Y )) = d(Y Q1,Q(Y )Q2) for
any Q1, Q2 ∈ Up. Then the quantization problem in (1) can be
formulated in Gn,p as

Q : Gn,p �→ W, where W = {Y1, · · · , YN}, Yi ∈ Gn,p. (3)

In this case the rate of the quantizer is not well defined, since either
2np or the dimension of Gn,p may be used to normalize log2 N .
Consequently, we study the performance of the quantizer (3) as a
function of N .

Formulating the quantization problem on Gn,p (as opposed
to �n×p) enables us to exploit the redundancy arising from the
geometry of manifold in the form of the:

(i) orthonormality constraint - the columns of Y are orthonor-
mal,

(ii) rotation invariance - post multiplication of Y by any ele-
ment of Up results in zero distortion.

The objective of this paper is to discuss codebook design algo-
rithms and study the rate-distortion function for a quantizer on the
Grassmann manifold. As an example application, a MIMO max-
imum ratio transmission/combining scheme with quantized chan-
nel information is analyzed.

1We use H to denote conjugate transposition, ‖ · ‖2 to denote the
matrix l2-norm, | · | to denote absolute value, �m to denote the m-
dimensional complex vector space, CN (0, 1) to denote complex normal
distribution with independent real and imaginary parts distributed accord-
ing to N (0, 1/2)
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Signal processing techniques on the Grassmann manifold in-
clude optimization algorithms [1, 3–5], space-time code design
[6, 7] and quantized precoded MIMO systems [8–11]. A nice ex-
position of the geometry of the Grassmann manifold is provided
in [3] and [1] in the context of optimization and in [12, 13] in
the context of codes or “packings”. The algorithm presented for
codebook design in the case of Gn,1 is the Lloyd algorithm for
vector quantization with a sin θ distance [2, 8, 14]. Another algo-
rithm mentioned for codebook design in the general case of Gn,p

is presented in [6]. The rate distortion analysis for Gn,1 is also
presented partly in [14] in the context of performance analysis of
MIMO beamforming combining systems. In the case of Gn,p, an
asymptotic analysis for rate distortion is proposed [12, 15].

In Section 2, the quantization problem on Gn,p is formally
stated and distortion functions are defined, and codebook design
algorithms are presented. Rate-distortion analysis is presented in
Section 3. This theory is applied to a MIMO beamforming scheme
in Section 4.

2. PROBLEM DESCRIPTION

Let us consider a source that lives in the complex Grassmann man-
ifold Gn,p. A probability measure can be defined over Gn,p using
the Haar measure. In this paper, we characterize the performance
of the quantizer assuming that the probability distribution of the
source is uniform (isotropic). Then

f(Y ) = k(n, p), Y ∈ Gn,p (4)

where k(n, p) is a constant derived from the volume of Gn,p and
normalizes the density function [12, 16]. The notion of distortion
in Gn,p can be defined based on the principal angles between the
subspaces Y1, Y2 ∈ Gn,p. Let {θi}p

i=1 be the principal angles
between the subspaces spanned by the columns of Y1 and Y2.
This also means that the singular value decomposition of Y H

1 Y2

is U(cosΘ)V H where (cosΘ) = diag(cos θ1, · · · , cos θp). As-
sume that the distortion function in Gn,p is the chordal distortion
defined as 2

d(Y1, Y2) =
1

2
‖Y1Y

H
1 − Y2Y

H
2 ‖2

2 = ‖ sinΘ‖2
2. (5)

One of the advantages of the chordal distortion is the fact that with
the metric of chordal distance (the positive square root of chordal
distortion) Gn,p can be isometrically embedded into a sphere of

radius
�

p(n − p)/n in �n2−1 [12,13]. Consequently, bounds on
the size of spherical codes can be applied to codebooks in Gn,p.

Let W = {Wi}N
i=1, Wi ∈ Gn,p be the codebook for quanti-

zation. We restrict ourselves to nearest neighbor quantizers. The
Voronoi regions corresponding to each codeword induced by the
quantizer is then given by (assuming that ties are resolved arbitrar-
ily)

V (Wi) = {Y ∈ Gn,p : d(Y, Wi) ≤ d(Y, Wj), j �= i}. (6)

The expected distortion of the quantizer as a function of the cardi-
nality of the codebook can be written as

D(N) = E {d(Y,Q(Y ))} =

N�
i=1

�
V (Wi)

d(Y, Wi)f(Y )dY.

(7)

2This definition of chordal distortion is the square of the chordal dis-
tance defined in [13]. Note: from [1, 12]

�
d(Y1, Y2) is a metric, but

d(Y1, Y2) is not necessarily a metric.

A distortion optimal codebook for a given value of N is given by

W∗ = arg min
W

D(N) (8)

and the function D(N) is termed the distortion rate function of W .
Remark on Codebook Design: It is intuitive that the codebook
design criterion in (8) aims to choose N points that are uniformly
positioned in Gn,p. In the case of Gn,1, the Lloyd algorithm for
codebook design for vector quantization can be employed with the
chordal distance metric to obtain a local optimum for the optimiza-
tion problem in (8) (for details of the algorithm see [2, 8, 14]). For
the general case of Gn,p, the optimization problem in (8) is diffi-
cult to solve directly and alternate cost functions have been pro-
posed that capture this notion of uniformity. In this paper we con-
sider the following max-min criterion for codebook design, defin-
ing an optimal codebook as

W† = arg max
W

∆(W) (9)

∆(W) = min
Wi,Wj∈W,i�=j

d(Wi, Wj). (10)

It is observed that the Fourier based construction in [6] can be
employed to generate codebooks for Gn,p using the max-min cri-
terion that provide good distortion performance.

3. DISTORTION RATE CHARACTERIZATION

Following (9), (10), let us define ∆†(N) ≡ ∆(W†), observing
that ∆†(N) does not depend on any particular codebook. Let us
also define a ball of radius γ centered at Y in Gn,p as

Bγ(Y ∈ Gn,p) = {X ∈ Gn,p : d(X, Y ) ≤ γ} . (11)

The expected distortion D(N) from (7) can be characterized as

D(N) =

N�
i=1

�
V (Wi)

d(Y, Wi)f(Y )dY (12)

≥
N�

i=1

�
B∆(W)/2(Wi)

d(Y, Wi)f(Y )dY (13)

=

N�
i=1

�
Gn,p

P (B∆(W)/2(Wi))d(Y, Wi)

· f(Y |Y ∈ B∆(W)/2(Wi))dY

(14)

=

N�
i=1

P (B∆(W)/2(Wi))

· E �d(Y, Wi)|Y ∈ B∆(W)/2(Wi)
� (15)

= E
�
d(Y, W1)|Y ∈ B∆(W)/2(W1)

�
ηpacking (16)

where ηpacking in (16) is the packing density defined as ηpacking =�N
i=1 VolB∆(W)/2(Wi)/Vol(Gn,p). Note that ηpacking can be

related to the packing density of spherical codes using the isotropic
embedding of Gn,p into �n2−1 [13, 17]. The bound in (13) is
due to the fact that B∆(W)/2(Wi) ⊂ V (Wi), ∀i, (14) follows by
defining P (B∆(W)/2(Wi)) =

�
B∆(W)/2(Wi)

f(Y )dY , (16) fol-

lows since P (B∆(W)/2(Wi)) = VolB∆(W)/2(Wi)/VolGn,p and
that the conditional expected distortion is independent of Wi due
to the isotropic distribution.

The following lemma provides a way of characterizing the dis-
tortion.
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Theorem 1. If ∆†(N) > ∆†(N + 1), it follows that Gn,p ⊂
∪N

i=1B∆†(N)(Wi) where Wi ∈ W† and |W†| = N . In other

words, ∆†(N) is a covering radius for the code W†.

Proof: See [18]. �

The property, ∆†(N) > ∆†(N +1) is satisfied for most cases
of putatively optimal packings for practical values of N (see [13]).
In the following discussion we assume that the cardinality of the
codebook, N possesses this property. Then, from Theorem 1 and
following a similar derivation as in (16) the distortion function
D(N) can be bounded as

E
�
d(Y, W1)|Y ∈ B∆†(N)/2(W1)

�
ηpacking ≤ D†(N)

≤ E
�
d(Y, W1)|Y ∈ B∆†(N)(W1)

�
ηcovering

(17)

where ηcovering is the covering density defined as ηcovering =
Vol ∪N

i=1 B∆†(N)(Wi)/Vol(Gn,p). Thus, (17) characterizes the
distortion D(N) with lower and upper bounds depending on the
packing density and covering density of the codebook W†. Realiz-
ing that the optimal codebook W† is the best “packing”, ηpacking

is maximized by W†.
In the particular case of Gn,1, the conditional expected dis-

tortion in a ball can be accurately characterized and the result is
summarized in the following theorem.

Theorem 2. In Gn,1, the chordal distortion in the ball Bγ(Y ∈
Gn,1) is given by

E{d(X, Y )|X ∈ Bγ(Y ∈ Gn,1)} =
n − 1

n
γ2. (18)

Proof: See [18]. �

In the case of Gn,p, p > 1, an accurate characterization of
conditional distortion is difficult. In the asymptotic regime, how-
ever, the distortion is characterized by the following.

Theorem 3. In Gn,p, p > 1, with the chordal distance d(Y1, Y2) =
‖ sinΘ‖2, as n→ ∞ the distortion in Bγ(Y ) is characterized by

E{d(X, Y )|X ∈ Bγ(Y ∈ Gn,p)} ≥
�
(n − 2p) + 1

(n − 2p)

�−(1+ p
2 )

γ2.

(19)

Proof: See [18]. �

The expected distortion D†(N) can be characterized using
(17) along with Theorems 2 and 3. In general, an accurate for-
mula for ∆†(N) is not available but ∆†(N) can be characterized
by bounds. In the case of Gn,1 a bound derived in [9, 10] can be
expressed as

∆†(N) ≤ 2

�
1

N

� 1
2(n−1)

, |W| = N. (20)

In the general case of Gn,p, the Rankin bound (obtained by the
isotropic embedding proposed in [13]) and a bound obtained from
the Gilbert-Varshamov and Hamming inequalities of sphere pack-
ing using the volume of metric balls computed in [12] can be com-
bined as

∆†(N) ≤ min

�
p,

�
p(n − p)N

n(N − 1)
,

�
2p

�
1 −

�
1 − 1

N1/np

���
.

(21)

It is observed that the Rankin bound is not tight at high values of
N and the derivation of the other bounds as in (20), (21) subsumes
that ηpacking = 1. Thus, in the case of Gn,1 with large N , an
approximation of D†(N) can be derived using the bound in (20),
the bound in (17) and Theorem 2 and the fact ηpacking = 1 which
gives

D†(N) ≈
�

n − 1

n

��
1

N

� 1
n−1

. (22)

In the case of Gn,p, p > 1, using Theorem 3 and the fact that
ηcovering > 1, we can obtain an approximation of D†(N) using
the upper bound as

E
�
d(Y, W1)|Y ∈ B∆†(N)(W1)

�
ηcovering

>

�
(n − 2p) + 1

(n − 2p)

�−(1+ p
2 ) 	

∆†(N)

2 (23)

where ∆†(N) is estimated from (21).
In Table 1, the simulated distortion performance of practically

designed codebooks (not necessarily W†) is compared to the ap-
proximation of D†(N) (as in (22)) in the case of G4,1. The ap-
proximation of D†(N) is close to the simulated distortion rate
performance. In the case of G10,2 Table 2 illustrates that the sim-
ulated distortion rate curve is close to the approximation obtained
from (23).

4. EXAMPLE APPLICATION OF GRASSMANN
QUANTIZATION

In this section, we provide an example application of quantization
on Gn,1. Let us consider a narrowband MIMO wireless system
with quantized beamforming and receive combining. Details of
the system description and the problem can be found in [8–10]. Let
the cardinality of the codebook W† be N, the number of transmit
antennas be Mt and for simplicity let us consider a single receive
antenna 3. Define Γ(N,W†) as the expected loss in the signal-to-
noise ratio of the system due to quantization. This is a measure
of the difference between the channel gain due to transmission on
the maximum eigenmode and the resultant channel gain due to
transmission on the best choice of the codeword. Then,

Γ(N,W†) = E{ min
Wi∈W

(λ − ‖HWi‖2)}, (24)

= E{λ}
�

1 − E

�
max

1≤i≤N
|W H

i Y |2
��

, Y ∈ GMt,1

(25)

= E{λ}E
�

min
1≤i≤N

d2(Y, Wi)

�
(26)

= E{λ}D†(N) (27)

≈ E{λ}Mt − 1

Mt

�
1

N

� 1
Mt−1

(28)

= (Mt − 1)

�
1

N

� 1
Mt−1

(29)

where H is a 1×Mt vector with [H]i ∼ CN (0, 1), λ is the eigen-
value of HHH and Y is the corresponding normalized eigenvec-
tor; (25) follows from the fact that λ and Y are independent, (26)

3The analysis presented here also extends to multiple receive antennas
[14].
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follows from the definition of chordal distance in (5), (27) follows
from the definition of distortion rate function in (7) and the fact
that Y is isotropic, (28) follows from (22) and (29) follows from
the fact that E{λ} = Mt. In the particular case of Mt = 3,
Mr = 1, (29) is evaluated and compared against the simulated
loss in SNR, Γ(N,W), for codebooks designed using the Lloyd
algorithm mentioned in section 2. The results are plotted in Fig. 4
which shows that the lower bound provides a good estimate of the
loss in SNR for practical values of N .

Table 1. Distortion-Rate for G4,1.
N Approx. of D†(N) Simulated D(N)

22 0.4725 0.4800
23 0.3750 0.3929
24 0.2976 0.3090
25 0.2362 0.2507
26 0.1875 0.2005

Table 2. Distortion-Rate for G10,2.
N Simulated D(N) Approx. of D†(N)

22 1.4049 1.5673
23 1.3338 1.3434
24 1.2743 1.2539
25 1.2210 1.2134
26 1.1707 1.1942
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