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ABSTRACT

Assessment of the arterial pulse wave velocity (PWV) has
long been an area of interest in physiology, and ultrasound
has long been used to provide measurements for such
assessments. Recently, new signal processing approaches
for ultrasound data have emerged. However, these
methods suffer from inaccuracies due to pulse wave
reflections, which are always present and can strongly bias
the PWV estimates away from the true velocity. Recently
the authors [1] showed that pulse wave velocity estimation
from several ultrasound measurements taken along a short
uniform arterial segment is equivalent to the broadband
directional of arrival problem with coherent multipath
found in radar and sonar. This tutorial paper reviews the
physiological and ultrasound-systems aspects of the PWV
estimation problem, and examines its relationship to the
direction-of-arrival estimation problem. The paper also
demonstrates why nonlinear, high-resolution methods are
needed and outlines the application of several such
estimators to the problem.

1. INTRODUCTION

When the left ventricle of the human heart contracts, an
impulse of pressure travels through the arterial system.
The speed with which this pressure pulse travels is called
the arterial pulse wave velocity (PWV). Roughly, it varies
in the range of 3 m/s to as high as 15 m/s in the human
body [2]. The mechanism of propagation of this wave is
the elastic expansion of the walls of the arteries, not
motion of the blood, although there is an impulse of blood
velocity associated with the propagating pressure. This
propagation mechanism can be approximately described
by a linear wave equation parameterized by blood density
and arterial wall elasticity. (This is an approximation
because the arterial walls are neither purely elastic nor
linearly elastic.) If we extract the PWV from this wave
equation, we get the Moens-Korteweg equation:

Eh
v _‘/E (1)

where E is the modulus of elasticity, h is the thickness of
the artery wall, r is the radius of the arterial lumen and p is
the blood density. The observable disturbance whose
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propagation is described by the wave equation is the
expansion or distension of the artery under the influence
of the pressure pulse.

Because pulse propagation is based on elastic
expansion of the arterial walls, the PWV is indicative of
the local elastic state of an arterial segment, which may be
indicative of arterial disease. In addition, the PWV
changes with the mean radius of the arteries, and so the
PWYV can be generally indicative of blood pressure, since
increased pressures will result in greater mean arterial
distension. Thus the PWV is potentially a physiological
measurement of interest.
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Figure 1. Pressure waveform from plethysmography data.

A typical arterial pressure waveform is plotted in
Figure 1. This waveform was obtained from the femoral
artery of a human subject wusing impedance
plethysmography, which in this application measures
change in total blood volume in a section of the leg. A
single heart cycle is depicted, which lasts for roughly 1.4
seconds in this case. Such a waveform will have a
fundamental wavelength of several meters for pulse wave
velocities in the normal physiological range.

Pulse wave reflections arise at points in the
arterial system where the arteries change their size, such
as at bifurcations. The change in radius changes the
characteristic impedance of the transmission medium,
which results in a reflection traveling with the same speed
as the forward wave. The arterial system is tree-
structured, and so reflection sites are numerous.
Therefore any measurement of the arterial pressure pulse,
or the arterial distension that results from it, will be
affected by reflections, and the effect can be great. The
observed combination of forward and reflected waves will
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produce different wave shapes at distinct measurement
sites. This change of shape means that techniques based
on identification of a common feature of the disturbance at
two sites and measurement the time delay between its
appearance at those sites will be biased away from the true
value of the delay of the forward-propagating disturbance.
Such a biased measurement, formed under the influence of
reflections, is called an apparent pulse wave velocity [2].
The true value of the PWV, which would be observed in a
(hypothetical) long uniform arterial section, is called the
characteristic PWV, and it is this quantity that is given by
the Moens-Korteweg equation.

Milnor [2] describes several methods of
measuring PWYV, based on comparison of pressure, flow
or distension measurements at two arterial sites. Two
such techniques are analyzed in [1]. The standard PWV
estimate of this kind is the “foot-to-foot” method, which is
based on the time difference between the onset of systolic
pressure. It acquires limited resistance to the effect of
reflections through selection of this feature, but it is more
biased than model-based approaches described here [1].

More recent work in this area has focused on
obtaining the PWV in a single, unbifurcated arterial
segment of uniform lumen radius. Such segments are
limited in length to roughly 5 centimeters. It is to this
problem that ultrasound can be applied with greatest
effect, since it is able to produce nearly simultaneous,
independent distension measurements from arterial sites
spaced only millimeters away from each other.

The use of ultrasound measurements at multiple
sites along the artery to estimate pulse wave velocity was
introduced by Meinders, et. al. [4]. Because of the
placement of the measurement sites with respect to the
artery, we call this data set the long-axis measurement
(see Figure 2). The measurement is typically made using
a single linear array of ultrasound transducer elements,
with the different measurement sites defined by different
translations of the active aperture. In the Meinders
approach, ultrasound is used to obtain distension
waveforms at sixteen sites along a two centimeter long
arterial segment, and spatial and temporal derivatives are
obtained and divided to produce a spatial velocity estimate
for the disturbance:

N dx aVat
go=22o_ Lot
Pdt oy

ox

where y is the vessel diameter and x is the distance in the

direction of wave propagation. This method makes no

provision for pulse wave reflections and is highly biased
by them [1].

The application of ultrasound to medical imaging
is well-documented [3]. There are two basic ways in
which the pulse wave disturbance can be sensed using
ultrasound: direct distension measurement or distention
rate measurement based on Doppler shift induced by the

@)

moving arterial walls. The technique of [4] uses arterial
diameter as the basic measurement; a useful refinement to
the method was introduced in [5] and uses tissue Doppler
to overcome axial resolution limitations of the diameter
measurement.
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Figure 2. Long-axis ultrasound data collection.

The time required to acquire a single one-
dimensional ultrasound image is determined by the round-
trip acoustic propagation time. The speed of propagation
of ultrasound in tissue varies around 1.54 mm/microsec.
If a superficial artery is chosen for imaging, it may be
required to image to a depth of 2-3 cm, requiring roughly
40 microseconds per line. If arterial area measurements
are being taken, multiple lines will be needed. If Doppler
measurements are being used, several insonifications are
required to compute a single Doppler shift. In either case,
time must be allowed between insonifications to let
reverberations fade away. Also, data cannot be obtained
simultaneously from more than one site. All of this
affects the maximum sample rate at which distension or
distension rate data may be acquired. In our experimental
work, we use data sampled at approximately one
Ksample/sec at six measurement sites.

In Section 2 of this paper, we describe an
interpretation of the PWV estimation problem as one of
direction-of-arrival  estimation, which allows the
application of a wide range of array signal processing
techniques to the problem. In Section 3 we give an
overview of the algorithms available for this problem and
a simulation example. In Section 4 we summarize.

2. LONG-AXIS PWV ESTIMATION AS A BROADBAND

ARRAY SIGNAL PROCESSING PROBLEM
Figure 2 shows a schematic representation of the set-up
for ultrasound data collection. At each of N measurement
sites, corresponding to ultrasound A-lines separated by a
distance d from one another, a Doppler signal due to
arterial wall motion is recorded. From this data, we wish
to estimate the pulse wave velocity.

Suppose that the most distal site is a distance D
upstream from a reflection site with reflection coefficient
I (see Figure 2). The total disturbance at the n" site may
be considered to be the sum of a forward and a reverse
component. (We discount the possible effects of multiple
reflections.) If we express all the components of the
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observed disturbances as delayed versions of the forward
disturbance observed at the first site, denoted by z(t), then
the disturbance at the N sites is given by a vector

Z(.t) ] z(t—%)
v(t)= z(t—(:“%] T z(t—_(nv—il)d—%j 3)

(N-I)d e
520 |y

P P

where A = 2(N-1)d + 2D, is the round-trip distance from
the first measurement site to the reflection site and where
v, is the pulse wave velocity. Given a set of observations
of the y(t) vector, we wish to estimate the three unknown
parameters, D, I" and v,. (The quantity d is known, and D
may also be known in some cases.)

It is clear from Figure 1 that z(t) is a broadband
waveform, and equation (3) has a form similar to that of a
broadband direction-of-arrival (DOA) estimation problem
for two far-field sources impinging on a uniformly spaced
line array. In the standard broadband direction-of-arrival
scenario, the propagation speed is constant and the delay
between the components observed at different array
elements varies due to the direction of arrival. In the
PWYV estimation problem, the direction of arrival is fixed
at 0=0, for the forward wave and o=n, for the reflection,
and the phase increment varies due to variation in the
speed of propagation. Mathematically, this is a very
similar problem, and the same mathematical ideas and
algorithms can be used to solve it.

It is common to treat the broadband DOA
problem by taking a Fourier transform of the observations
and treating each separate frequency component as arising
from a narrowband scenario [6], and we will adopt this
approach. If we take the DFT of a segment of each of the
observations, assuming that we have samples at times
t=0,T,...,mT...,(M—1)T, we can write a vector of k™ DFT
coefficients as [1]

j2mA
Y(k) = Z(k) | e 2ndk T eTMvp ¢ —2ndk @)
TMVp TMVp

where we define {Z(k)} to be the DFT of {z(mT)}, and
€(¢) is a narrowband phase response vector

s0)=[1 HND|T (s

The change in phase between successive components of €
is referred to as the phase increment of €. The two phase
increments given in (4) are negatives of one another, and
are determined by the unknown pulse wave velocity.
Referring to Figure 1, we note that most of the energy in
the waveform resides in the lower frequency components.
Thus, when performing PWV estimation on observation
vectors from the higher indexed DFT bins, SNR may not
be sufficient to produce good results.

e om-1)

The presence of the reflection term in (4) makes
it similar to the symmetric multipath case [7]. Multipath
occurs when two planewaves originate from the same
signal source, which implies they will have the same
phase relationship to each other in any observation.
Symmetric multipath occurs when the two planewaves
impinge on the array from symmetric angles. (The Z(k)
factor in (4) does not affect the phase relationship between
the two vectors, even though Z(k) can change in
amplitude and phase between heartbeats due to changes in
waveform shape and sampling phase.)

The coherent relationship between the two &(¢)
vectors in (4) precludes the use of certain simple
estimation procedures, such as the standard MUSIC
algorithm without pre-processing. However, there is a
great deal of signal processing literature dealing with the
DOA estimation problem in this form, and we are now in
a position to apply it to arterial PWV estimation using
long-axis ultrasound.

3. ALGORITHMS
The simplest approach to DOA estimation is ordinary
linear beamforming, corresponding to the maximization of
the discrete-time Fourier transform (DTFT) periodogram
of the observation. This requires a one-dimensional
search over the PWV domain to maximize the quantity

2
2ndk
I(v,))=le"| =——| Y(k 6
(vy) [ TMvp] (k) Q)
where the superscript H  represents Hermitian

transposition. The problem with this procedure for the
present application is that the aperture is only a small
fraction of the equivalent wavelength for any DFT index
that contains an appreciable fraction of the signal energy.
If we define the propagation speed divided by the duration
of a heart cycle as the fundamental wavelength, then a
typical pressure pulse will be at least three meters long.
A typical 4 cm. aperture is much too small to locate the
PWYV even in the absence of reflections, since the entire
range of physiologically reasonable PWV’s is entirely
within the mainlobe of the “array pattern”, for small k.

For example, Figure 3 depicts a simulation of the
use of the DTFT periodogram approach. The simulation
uses a single noise-free recorded pressure waveform like
that in Figure 1. The simulated PWV was 4 m/s, and a
reflection was simulated with I' = 0.3 and D = 2 cm.
Eight measurements spaced over a 5 cm aperture were
simulated, and the equivalent narrowband wavelength for
the DFT index used was 0.95 meters. The forward and
reflected PWV’s are marked by arrows in Fig. 3, and the
height of the arrows encodes the relative amplitude of the
two disturbance components. The response is plotted
against inverse PWYV, which corresponds to angle of
arrival in the DOA problem and the result for the 5 cm
aperture is plotted in Figure 3 as a solid line. Note that the
maximum value of this solid line occurs at 6.2 m/s. By
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way of contrast, a 2-meter-long, 16-clement aperture was
simulated using the same arterial parameters and is plotted
in Figure 3 as a dashed line. This aperture allows accurate
estimation of the PWV, but clearly such a data gathering
arrangement is out of the question due to its size. This
suggests the need for estimators that can exceed the
Fourier resolution limit for the small phisical aperture.
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Figure 3. PWV estimation using linear Fourier method.

The Fourier resolution limit can be exceeded by
nonlinear, parametric methods for high-resolution DOA
estimation, most of which can be formulated as operating
on the covariance matrix of the observation. In the
present application, a sample covariance matrix is formed
by averaging over multiple heart cycles the outer products
of the data vectors from the k™ DFT bin.

N
RO =1V, )Y, (k) (7
n=I
Due to the coherence of the two response vectors in (4),

ﬁ(k) will have a signal subspace dimension of one.

One way to overcome this rank deficiency is to
employ methods such as least-squares [1] or maximum
likelihood [7]. Note that the M-dimensional search
generally required by these approaches is actually 1-D in
this application. These methods have the drawback that
they tend to require high SNR.

Another workable approach is eigenanalysis of
the averaged covariance matrix obtained from spatial
smoothing [8]. The MUSIC algorithm is easy to apply in
this case because the search is one-dimensional. ESPRIT
[8] is also a possibility because of the regular spacing of
the measurement sites. Other methods related to ESPRIT,
such as subspace fitting [8], can also be used.

In general, all of these methods will result in
some number of distinct PWV estimates for different DFT
bins. A posteriori combination of these estimates can
present a problem, especially for low SNR observations.
Thus the approximate coherent combination approach of
Wang and Kaveh [9] may be especially well-suited to the
present application.

4. DISCUSSION

In this paper we have presented a new signal processing
framework for the problem of estimating the arterial pulse
wave velocity from a long-axis ultrasound data set. The
attempt to apply model-based signal processing to
overcome the limitations of existing methods in this
application has revealed an underlying similarity to
broadband direction-of-arrival estimation problems using
uniform line arrays. The similarity between these two
problems is more than a mere analogy. If fact, in
ultrasound PWV estimation we are sensing a propagating
disturbance which is constrained to travel in the “endfire”
direction with respect to the array, and whose propagation
velocity varies.

The use of derived measurements at every
“sensor” is the primary difference between the present
application and the DOA estimation using a line array.
The use of such measurements can result in problems of
consistency. For example, if the alignment between the
wall of the artery and the ultrasound lines varies between
measurement sites, then the Doppler signature of the
disturbance will be different for different sites. The
question of which of the high-resolution, nonlinear
procedures is best suited to work using ultrasound data is
currently the primary focus of our research.
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