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ABSTRACT

Machine translation (MT) accuracy has recently increased, 

due to better techniques and to the availability of larger 

parallel training sets.  Statistical MT systems are now able 

to translate across a wide variety of language pairs.  This 

paper covers the basic elements of state-of-the-art, 

statistical MT, including modeling, decoding, evaluation, 

and data preparation. 

1. INTRODUCTION 

There are many approaches to the machine translation of 

human languages.  Some approaches require manual 

knowledge entry by highly skilled linguists, while others 

make use of automatic training procedures.  Some 

approaches make use of abstract meaning representations, 

while others work at the level of word substitution.  Many 

combinations of these dimensions have been explored – 

manual entry of large dictionaries, automatic learning of 

phrase substitution tables, semi-automatic construction of 

syntactic-transformation rules, etc. 

Automatic statistical training has recently made a 

major impact on MT accuracy.  The field is evolving 

rapidly, as we can observe in these sample English MT 

outputs from the same original Arabic input document: 

Best system in NIST 2002 

MT evaluation: 

Best system in NIST 2003 

MT evaluation: 

insistent Wednesday may 

recurred her trips to 

Libya tomorrow for 

flying

Cairo  6-4  ( AFP )  - an 

official announced today in 

the Egyptian lines company 

for flying Tuesday is a 

company “insistent  for 

flying” may resumed a 

consideration of a day 

Wednesday tomorrow her 

Egyptair Has Tomorrow 

to Resume Its Flights to 

Libya

Cairo 4-6 (AFP) - said an 

official at the Egyptian 

Aviation Company today 

that the company egyptair 

may resume as of 

tomorrow, Wednesday its 

flights to Libya after the 

International Security 

trips to Libya of Security 

Council decision trace  

international the imposed 

ban comment.  And said the 

official  “the institution sent 

a speech to Ministry of 

Foreign Affairs of lifting on 

Libya air , a situation her 

receiving replying are so a 

trip will pull to Libya a 

morning Wednesday”.

Council resolution to the 

suspension of the embargo 

imposed on Libya.  “The 

official said that the 

company had sent a letter to 

the Ministry of Foreign 

Affairs, information on the 

lifting of the air embargo 

on Libya, where it had 

received a response, the 

first take off a trip to Libya 

on Wednesday morning”. 

We believe that the transition from gibberish to 

understandable outputs can be attributed to the increased 

availability of parallel data and progress in modeling, 

decoding, and automatic evaluation. In this paper, we 

review these basic elements of statistical MT, as currently 

practiced in the year 2004. Given the current pace of 

progress, it is likely that many of the techniques described 

in this paper will become obsolete in the near future.   

2. TRAINING DATA 

Statistical MT systems are trained on bilingual (human 

translated) documents, usually from natural sources like 

the French/English Canadian parliament proceedings or 

United Nations transcripts.  Such collections have been 

growing in size, as demonstrated by the amounts of 

Chinese/English, Arabic/English, and French/English 

materials distributed widely to researchers over time (see 

Figure 1).  Millions of words of bilingual data exist for 

dozens of language pairs.  Most researchers believe that 

deep secrets of translation lie buried in these large data 

sets, waiting to be uncovered by automatic analysis.   

Natural bilingual data usually needs substantial 

cleaning before it can be used – text de-formatting, 

encoding detection/conversion, and so on.  It must also be 
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Figure 1: Data in sentence-pair format, available to 

researchers from the Linguistic Data Consortium. 

sentence aligned, as statistical MT training procedures 

normally expect sentence pairs, not document pairs.  Of 

course, sentences frequently do not match up one-for-one, 

and sections of text are often completely dropped by 

translators.  To deal with such noise, and to produce 

shorter pairs for improved statistical training, a recent 

trend is to produce “segment-aligned” text, rather than 

sentence-aligned text, where segments may be smaller 

than sentences [4]. Another trend is to extract parallel 

segments from non-parallel corpora [11]. 

Text is also tokenized into words, with punctuation 

marks usually treated as “words” themselves.  (MT 

researchers use the word segmentation instead of 

tokenization when the language is particularly hard to 

tokenize – e.g., Chinese or Thai).  Finally, text is usually 

lower-cased prior to training.  The resulting loss of 

information is considered outweighed by the positive 

reduction in vocabulary size (and therefore in the size of 

the learned translation dictionaries).  MT output is 

typically recapitalized in a post-processing step.  

3. EVALUATION 

For decades, it was assumed that evaluating the quality of 

an MT engine is necessarily a subjective process. Two 

factors contributed to this state of affairs.  

1. Since translation is a generation (and not a 

classification) task, it was unclear how one could 

associate a gold standard to a given test set. Table 1, 

which lists Chinese-to-English translations produced 

by 11 distinct translation agencies, shows the high 

degree of variability in human translated data. 

2. Because the process of translation induces large scale 

word/phrase movements (see Table 1), it was unclear 

how one could measure the “distance” between 

machine and human produced translations. 

1. At least 12 people were killed in the battle last week. 

2. At least 12 people lost their lives in last week's fighting.  

3. Last week's fight took at least 12 lives.   

4. The fighting last week killed at least 12.  

5. The battle of last week killed at least 12 persons.   

6. At least 12 persons died in the fighting last week.  

7. At least 12 died in the battle last week.   

8. At least 12 people were killed in the fighting last week.  

9. During last week's fighting, at least 12 people died.   

10. Last week at least twelve people died in the fighting.  

11. Last week's fighting took the lives of twelve people.

Table 1: Human translations of a Chinese sentence. 

Until recently, MT researchers could not validate their 

ideas in a fast develop/test/evaluate cycle due to the 

subjective nature of the evaluation process, which 

employed sophisticated protocols for counting the number 

of lexical, syntactic, and semantic errors. However, an 

influential paper by Papineni et al. [15] showed that 

translation performance (adequacy and fluency) correlates 

well with the number of n-grams that co-occur in a 

translated document and a set of reference translations: the 

higher the overlap, the higher the performance of the 

system. Several other objective metrics, such as Word 

Error Rate and Position Independent Error Rate [12] also 

appear to correlate well with translation quality. Only two 

years after publication [15], the Bleu metric has become 

the metric of choice for measuring progress in DARPA-

sponsored annual evaluations carried out at NIST and a 

required ingredient in any research paper.  Human 

translations can also be scored by Bleu, typically falling 

around 60% (rather than 100%, due to translator 

variation).  The best Arabic systems score 46%. 

Until now, Bleu has been an important catalyst for the 

recent progress in the field. It is an open question whether 

Bleu will remain responsive to increases in automatic 

translation quality, especially as statistical models that 

impose global grammaticality play an increasing role [3]. 

4. MODELS 

The original translation scheme proposed at IBM [1] in the 

late 1980s used Bayes Rule, in which one tries to choose a 

translation e for source sentence f that maximizes P(e | f), 

or equivalently maximizes P(e)· P(f | e).  The first term has 

almost always been captured by a smoothed n-gram 

language model.  There are many approaches to the 

second term.  

 The IBM Models 1 through 5 approximate the 

translation of e into f as a word substitution/permutation 

process.  Each of the models has a slightly different 

generative probabilistic story.  For example, Model 3 uses 

a four-step process:  

1. Each English word in e is either dropped, copied, 

duplicated, triplicated, etc.  This decision is 

probabilistically controlled by a fertility table 

(fertility | english-word).  
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2. After each resulting word, a dummy word NULL is 

either inserted or not.  This decision is controlled by a 

single global parameter p.  NULL words are used to 

generate foreign-language function words with no 

direct English correlate.

3. Each resulting word is translated into some foreign 

word, as controlled by a large translation table 

t(foreign-word | english-word).  

4. Each word in the resulting string is permuted into a 

possibly-different position, as controlled by a 

distortion table d(position-j | position-i, length-of-e, 

length-of-f).  

Values for entries in all four tables can be estimated with 

the EM algorithm over a large corpus of sentence pairs, 

though approximations must be made, as there appears to 

be no polynomial dynamic-programming EM solution for 

Model 3.  Model 1 is simpler: it drops the distortion and 

fertility tables, and as a consequence, admits an efficient 

quadratic-time EM training procedure with a convex 

likelihood surface.  (Quadratic in the length of the 

particular sentence pair being analyzed).  

Another popular model for P(f | e) is called “HMM” 

[16].  It extends Model 1 to capture distortions, and is 

trainable in cubic-time.  HMM distortions are relative, 

meaning that a word tends to locate its translation near the 

translation of the previous word, which encourages whole 

groups of words to move together in translation.  Another 

type of model is exemplified by Inversion Transduction 

Grammar (ITG) [17].  This joint model P(e, f) produces a 

bilingual binary tree with both “normal” and “inverted” 

nodes.  Leaves of the tree are word-translation pairs.  

Sentence e is read off the bottom of this tree, while 

sentence f is read off from a tree in which the children of 

inverted nodes are re-ordered.  This model also 

encourages words to move in groups, and admits a high-

polynomial EM training procedure.  

While the parameters from these word-substitution 

models can be used to drive an MT decoder (runtime 

translator), they are more frequently used to produce a 

word-aligned bilingual corpus.  This corpus consists of the 

best (Viterbi) set of word-to-word connections for each 

sentence pair.  Even for this purpose, the above models 

suffer from a serious defect – one English word might 

align to several foreign words, but a foreign word can only 

align to a single English word.  For example, the Spanish 

word “inmobilaria” cannot align to both English words 

“real” and “estate”.  To solve this problem, one word 

alignment can be built in the English-to-foreign direction, 

another word alignment can be built in the foreign-to-

English direction, and the results can be merged.  

Word-aligned corpora have been effectively exploited 

for constructing phrase-substitution models, which have 

significantly outperformed word-based models in 

decoding.  In the Alignment Templates method [13], all 

phrase pairs consistent with a given word alignment are 

collected and counted.  These counts are normalized into 

probabilities and smoothed.  Count-based smoothing can 

be used, but word-pair smoothing (e.g., using Model 1 and 

the above-mentioned t-table) is preferred, as some low-

count phrase pairs are better than others.  

Finally, syntactic transfer models of P(f | e) have also 

been proposed and implemented [5,6,8,18].  A typical 

parameter of such a model is P(re-order | JJ NN), i.e., what 

is the chance an English adjective-noun phrase is re-

ordered when translated to French?  For us to estimate 

parameter values for these models, bilingual data must be 

automatically parsed (in either one language or both, 

depending on the model).  Past syntactic models have still 

been word-oriented, and it remains to be seen whether 

they can capture (and add to) large amounts of phrase-pair 

data.  Syntactic models have many potential benefits: (1) 

better control over word-reordering, (2) better control over 

the interpretation and generation of function words, and 

(3) efficient, tight integration with structured language 

models. This third benefit stands in contrast to speech 

recognition -- unlike acoustic models, syntactic translation 

models naturally produce trees (rather than strings), which 

can be directly scored by tree-based language models 

without the need for parsing.  Better language modeling 

may be more important for MT than for speech – unlike a 

speech recognizer, an MT system must carefully 

synthesize a fluent, never-before-uttered sentence. A 

glance over state-of-the-art MT output shows that most of 

the foreign language material is well-accounted for in 

automatic translation, but target-language fluency is often 

not there. Likewise, in the world of human translation, 

target-language proficiency is more highly prized than 

source-language proficiency.  

Translation modeling research has also moved beyond 

the Bayes Rule decomposition of P(e | f) into P(e) * P(f | 

e) [12,13,14].  As a simple example, just as in speech 

recognition, MT performance can be improved by raising 

one of these factors to a constant power.  It is also useful 

to add a third, length-bonus factor to counteract the 

tendency of the other two components to prefer shorter 

MT outputs.  Many systems now contain between five and 

fifteen such model components, each of which gets to cast 

a quantitative vote for each candidate MT output 

considered in decoding.  A model component (also called 

a feature function or a knowledge source) may be as 

complex as a language model trained on a billion-word 

corpus, or as simple as a binary feature that checks 

whether the proposed MT output correctly balances 

parentheses or quotes.  The parameter tuning problem is 

difficult because the function to be optimized is not 

smooth and has many local optima. Off-the-shelf 

optimization algorithms, such as Simplex, and MT-

specific optimization algorithms [12] have led to 

significant increases in performance over baseline 

systems. 
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5. DECODING

The most widely used decoders today are those built in 

conjunction with word-to-word and phrase-to-phrase 

translation models. Given a sentence f and a set of trained 

models M, the most generic decoders search for a 

translation e that maximizes a log-linear, weighted 

objective function defined over M. In the simplest case, M 

can contain only two models: a language model and a 

translation model.  

Because automatic translation allows for word 

reordering, finding the output e that maximizes the 

objective function is NP-complete [9]. Two techniques are 

used in practice to circumvent this problem. 

1. In a dynamic programming-based beam decoder 

[7,10,13,14], the output e is produced left-to-right, by 

incrementally constructing a lattice of partial 

translation hypotheses.  Each partial hypothesis stores 

the last (source-phrase:target-word) pair used in 

translation; the next-to-last target word; a coverage-

vector that makes explicit what source words have 

been already translated; a language and translation 

model score; other model scores. The most promising 

hypotheses are expanded left to right until a 

translation that has a coverage vector that subsumes 

the entire input sentence is found. The translation e is 

produced by traversing the backpointers associated 

with each node of the representation.  

2. In a greedy, anytime decoder [7], the output e is 

obtained by rapidly creating a complete initial 

translation (by translating every source word into its 

most probable target equivalent, for example); and by 

modifying this translation afterwards locally, in a 

greedy, incremental manner, while the local changes 

lead to translations of higher score. 

Decoders that exploit richer models of syntax [3,19] 

implement cross-lingual versions of stochastic parsing 

algorithms that have been proven successful in the context 

of syntactic parsing [2]. Research in word- and phrase-

based decoding is in its teens; research in syntax-based 

decoding is in its infancy. 

6. SPEECH AND MT 

Speech and MT have been integrated to assist person-to-

person communication in limited domains (“speech-to-

speech translation”).  It is still a challenge to support 

robust, spontaneous, two-way conversation.  New efforts 

are also underway to translate captured speech into 

English text, for retrieval (“speech-to-text translation”).  

Integrated ASR-MT systems can, for example, provide 

automatic English captions for foreign news broadcasts.  It 

is open whether it is profitable to jointly optimize 

parameters of ASR and MT systems, which until now 

have been separately optimized on ASR and MT training 

data. 
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