
PARSING AND ITS APPLICATIONS FOR CONVERSATIONAL SPEECH

Matthew Lease, Eugene Charniak, and Mark Johnson

Brown Laboratory for Linguistic Information Processing
Brown University

{mlease,ec,mj}@cs.brown.edu

ABSTRACT
This paper provides an introduction to recent work in statis-
tical parsing and its applications for conversational speech,
with particular emphasis on the relationship between pars-
ing and detecting speech repairs. While historically parsing
and repair detection have been studied independently, we
present a line of research which has spanned the boundary
between the two and demonstrated the efficacy of this syn-
ergistic approach. Our presentation highlights successes to
date, remaining challenges, and promising future work.

1. INTRODUCTION

In the last decade, statistical methods for syntactic parsing
have matured to the point where broad coverage, highly ac-
curate, and efficient parsing of text is now a reality. The
significance of this is that one can now reliably obtain struc-
tural information underlying language usage that can be ex-
ploited to create more accurate models of language produc-
tion and provide insights for its interpretation. In recent
years, this improved access to syntactic information has di-
rectly led to improved standards of performance in language
modeling [1], speech recognition [2], disfluency detection
[3], and machine translation [4].

In a parallel and largely separate track of research, speech
recognition accuracy has also improved dramatically over
the past 10 years. However, this work has largely restricted
itself to word token recognition, ignoring “metadata” issues
such as sentence boundary and disfluency detection. While
automatic recognition of these phenomena would clearly
benefit tasks like transcript cleanup, of greater significance
is the need for such detection as a preprocessing step for
downstream applications like machine translation and infor-
mation extraction. While most existing work in metadata
detection has focused on rich acoustic analysis [5], recent
work in syntax-driven techniques has shown this latter ap-
proach to be equally effective, as well as demonstrating the
enormous potential that exists for developing new synergies
between these previously disparate approaches [6].

This work was supported by NSF grants LIS 9720368 and
IIS0095940.

In this paper, we describe recent work in statistical pars-
ing and its applications for conversational speech, empha-
sizing the relationship between parsing and detecting speech
repairs. In Section 2, we introduce parsing and parser-based
language modeling. Section 3 highlights challenges in pars-
ing speech with particular regard to speech repairs. In Sec-
tion 4, we describe repairs in more detail and present an ap-
proach for detecting them using our parser-based language
model. Finally, Section 5 concludes and discusses impor-
tant issues for future work.

2. PARSING AND LANGUAGE MODELING

The goal of syntax is to find a systematic set of rules (a
grammar) that accurately models the infinite number of ways
words can (and cannot) be combined to form meaningful
phrases, and how such phrases can further combine to create
meaningful sentences. While there is no English grammar
today that is universally accepted by linguists, the grammar
induced by the Penn Treebank (PTB) [7] has been used to
improve the state-of-the-art on a number of tasks [1, 2, 3, 4].

The task of parsing can be defined most simply as find-
ing one or more syntactic analyses of a given sentence that
are consistent with a particular grammar. To give an ex-
ample, consider the sentence “John saw the man with the
binoculars.” Figure 1 shows two possible structures for this
sentence. Note that the two correspond to different mean-
ings: in Fig. 1(a), the man has the binoculars, while in Fig.
1(b) John is using the binoculars to see the man. This simple
example highlights a couple of interesting issues. On one
hand, we see how syntax and semantics intertwine: finding
the correct syntactic analysis for a given sentence can help
shed light on its intended meaning. At the same time, the
example also introduces the problem of syntactic ambiguity
that is rampant in practice: a typical length sentence will
have hundreds of competing syntactic analyses from which
the parser must select one as most likely.

Our state-of-the-art PTB-based parser [8] achieves ap-
proximately 90% labelled precision and recall in match-
ing annotator analyses, as measured on PTB’s Wall Street
Journal corpus, the traditional benchmark of the statisti-
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Fig. 1. Two structures for an ambiguous sentence.

cal parsing community. The parser is formulated as a lex-
icalized probabilistic context-free grammar (PCFG), with
probabilities of the various syntactic rules seen in the tree-
bank estimated via maximum likelihood. The use of lexical-
ized conditioning should be emphasized. Whereas a tradi-
tional, non-lexicalized CFG would produce the same analy-
sis whether the last word of our example were “binoculars”
or “hat”, a lexicalized CFG can learn (from treebank exam-
ples) to prefer Figure 1(b)’s analysis in the case of “binocu-
lars” and Figure 1(a)’s analysis in the case of “hat”.

A parse π’s probability is determined by a top-down
process of guessing each constituent c’s pre-terminal tag t,
then its lexical head h (its most important word syntacti-
cally), and finally its expansion e into other constituents,
given its label l (e.g. is it a noun or verb phrase) and rel-
evant history H (information outside c that our probability
model deems important). Thus we have

p(π) =
∏
c∈π

p(t | l,H) · p(h | t, l,H) · p(e | l, t, h,H)

To find the most likely parse for a given sentence s, one
just selects the π that maximizes the conditional probability.
This parsing model is of further interest because its gener-
ative model immediately leads to a way to perform syntax-
based language modeling: to estimate the probability of s,

Perplexity
Model Alone +Trigram WER
Trigram ≈ 167 – 13.7
Xu [2] 151.2 144.2 12.3
Roark [9] 152.3 137.3 12.7
Charniak [1] 130.2 126.1 11.9

Table 1. Perplexity results of syntax-based language mod-
els on a “speech-like” version of WSJ. Trigram interpola-
tion is with constant 0.36 for all models. Word Error Rate
(WER) is for n–best list rescoring on HUB–1 lattices [10].

just sum over a significant sample of its possible parses. In
comparison to the ubiquitous trigram, the relative efficacy
of such syntax-based language modeling is clear, as demon-
strated by the perplexity and WER results in Table 1.

3. PARSING SPEECH

While statistical parsing of textual corpora has been studied
for more than a decade, new challenges arise when one ap-
plies parsing to conversational speech. Not only are clearly
textual features such as punctuation and capitalization ab-
sent, but we even lack clear boundaries as to where one
“sentence-like unit” (SU) ends and the next begins, espe-
cially as speakers interrupt one another and provide
backchannel feedback. Most spontaneous speech also
abounds with disfluencies such as partial words, filled pauses
(e.g., “uh”, “um”), explicit editing terms (e.g., “I mean”),
and parenthetical asides.

One type of disfluency that has proven particularly prob-
lematic for parsing is speech repairs: when a speaker amends
what he is saying mid-sentence (see Figure 2). Following
the analysis of [12], a speech repair can be understood as
consisting of three parts: the reparandum (the material re-
paired), the editing phrase (that is typically either empty or
consists of a filler), and the repair. Speech repairs are diffi-
cult to model in HMM or PCFG models (e.g. the PCFG
model described in Section 2) because these models can
induce only linear or tree-structured dependencies between
words. However, the relationship between reparandum and
repair seems to be quite different: the repair is often a “rough
copy” of the reparandum, using the same or very similar
words in roughly the same order [13]. In other words, a
speech repair seems to involve “crossed” dependencies be-
tween the reparandum and the repair, as Figure 2 shows.

Such crossed-dependencies tend to cause collateral dam-
age to the entire syntactic analysis produced by a PCFG. For
this reason, we have adopted the approach of first detect-
ing and filtering out repairs, and then parsing the remain-
der of the SU. Such filtering is reasonable since repairs only
arise from production error, and thus may be safely removed
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. . . a flight to Boston,

︸ ︷︷ ︸
Reparandum

uh, I mean,

︸ ︷︷ ︸
Editing phrase

to Denver

︸ ︷︷ ︸
Repair

on Friday . . .

Fig. 2. The structure of a typical repair, with crossing dependencies between reparandum and repair.

Imean uh

a flight to Boston

to Denver on Friday

Fig. 3. The “helical” dependency structure induced by the generative model of speech repairs corresponding to Figure 2.

without any impact on meaning. Using this approach, we
have achieved parsing precision and recall of about 86% on
the Switchboard corpus of telephone conversations (assum-
ing known SU boundaries) [11]. With oracle knowledge of
repairs, this accuracy improves to 88%, so parsing stands to
benefit as repair detection techniques improve.

4. DETECTING SPEECH REPAIRS

Unlike HMMs and PCFGs, mildly context-sensitive gram-
mars such as Tree Adjoining Grammars (TAGs) are capa-
ble of describing crossing dependencies such as exhibited
by speech repairs. To effectively model both the crossed-
dependencies of speech repairs and the more usual linear
or tree-structured dependencies of non-repaired speech, we
have applied the noisy channel paradigm [3]. We begin by
imagining that speakers intend to say source sentences S

(with no repairs), but may mistakenly insert one or more
repairs, producing observed sentences O. Our goal, then, is
for each observed sentence to recover the most likely source
sentence ŝ. Applying Bayes Rule, we can formulate this
problem in canonical noisy channel form

ŝ = argmax
S

P(S|O) = argmax
S

P(O|S)P(S)

The channel model P(O|S) defines a stochastic mapping of
source sentences into observed sentences via the optional
insertion of one or more repairs. Similarly, our language
model P(S) defines a probability distribution over source
sentences. This is the same general setup that is used in
statistical speech recognition and machine translation, and
in these applications syntax-based language models yield
state-of-the-art performance [4, 10]. In this case, the chan-
nel model is realized as a TAG, and we train our parser-
based language model (Section 2) on sentences with the
speech repairs removed. Figure 3 shows the combined
model’s dependency structure for the repair of Figure 2. If

we trace the temporal word string through this dependency
structure, aligning words next to the words they are depen-
dent on, we obtain a “helical” type of structure familiar from
genome models, and in fact TAGs are being used to model
genomes for very similar reasons.

The output of our noisy channel model is a set of can-
didate repairs, which we then rescore using a maximum-
entropy model [6]. Using the MaxEnt model makes it rel-
atively easy to experiment with a wider range of features
beyond the TAG and PCFG probabilities. For example, we
added features based on the local context of the reparandum
that were used in an earlier algorithm [11]. An informal er-
ror analysis of the two repair detection algorithms [3, 11]
suggested that the noisy channel model was better at detect-
ing moderately long repairs, but the earlier classifier was
better at detecting very short repairs. Also, as parses let
us identify the syntactic context in which each speech re-
pair occurs, we have found the category labels immediately
dominating, preceding, and following the repair to be use-
ful features. Finally, we have incorporated features based
on prosodic information: word-by-word interruption point
(IP) probabilities produced by ICSI-SRI-UW [14].

In the recent Fall 2004 Rich Transcription blind evalua-
tion, metadata extraction systems competed in three unique
disfluency detection tasks. Edit Word Detection requires de-
termining which words were part of the reparandum region
of a speech repair. Filler Word Detection involves identi-
fying both which words are part of a filler phrase and the
type of filler (e.g. filled pause vs. discourse marker). In-
terruption Point Detection requires detecting the point at
which speech became disfluent. For all three tasks, the goal
is to minimize a simple error metric: the number of mis-
takes (false positives + false negatives) divided by the ac-
tual number of events (true positives). Performance was
measured on two types of input: manually annotated (ref-
erence) words and automatically recognized speech-to-text
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Detection Task STT Reference
Edit Words 76.25 46.08
Filler Words 39.93 23.69
Interruption Points 55.88 28.60

Table 2. Error rates on several metadata extraction tasks

(STT) tokens. For all three tasks, and on both types of in-
put, our noisy-channel, MaxEnt rescoring model was the top
performer in the evaluation [6]. Official results are given in
Table 2. Filler word detection, substantially easier than edit
word detection, was achieved via a few hand-crafted, de-
terministic rules. Our interruption point predictions were
explicitly determined by predicted edit and filler words.

5. CONCLUSION FUTURE WORK

We have reviewed recent work in statistical parsing and its
applications for conversational speech, with particular em-
phasis on the relationship between parsing and detecting
speech repairs. We now expand upon some of challenges
presented by conversational speech (Section 3) and identify
some other interesting areas for future work.

How can prosodic cues be most effectively leveraged in
parsing? To what degree can syntax be leveraged to support
SU boundary detection? Can parsing be made more robust
to ASR and SU boundary detection errors? How should
parsing accuracy be measured in the presence of these er-
rors? A forthcoming Johns Hopkins workshop led by Mary
Harper will investigate these and related issues.

Little has been done to date in using partially labeled
and unlabeled training to improve syntax-based language
models. In particular, there is a common misperception that
these models require hand-parsed training data, limiting the
amount of data available to them. This is not the case. We
have found that unlabeled data can be used to improve per-
plexity and word-error rates [10], and there is a significant
opportunity for further error reductions via this avenue.

Finally, there has also been encouraging work in work-
ing directly off of the word lattices produced by speech
recognition systems [10]. By exploiting redundancy across
different paths through the lattice, such techniques have the
opportunity to dramatically reduce complexity in comput-
ing alternatives. Furthermore, working off the lattice pro-
vides significantly more discrimination power, as well as a
wider range of candidates, than is possible with the typical
n-best rescoring approach.
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