
ABSTRACT

This paper highlights some fundamental issues involved in
the study of large-scale dynamical systems. Two particular
topics are discussed in some detail, one dealing with the
management of active sensors via partially observable
Markov decision processes, and the other dealing with the
modeling, recognition and tracking of multi-function
radars in an electronic warfare environment.

I.   INTRODUCTION

All dynamical systems share a basic feature: the state of
the system, be it scalar or vector, varies with time.
Typically, the state is not measurable directly. Rather, in an
indirect manner, it makes its effect measurable through a
set of observables. As such, the characterization of
dynamical systems is described by a state-space model,
which, in general, embodies two equations:
(i) State-evolution equation, which describes the

evolution of the state as a function of time:
(1)

where t denotes discrete time, xt denotes the state
vector at time t, f(.) is a vector-valued function of its
argument, and the vector wt denotes dynamic noise.

(ii) Measurement equation, which takes one of two forms,
depending on whether the system is passive or active:
(a) Passive dynamical system, described by

(2a)

where the vector yt denotes the set of observables,
g(.) denotes another vector-valued function, and
the vector vt denotes measurement noise.

(b) Active dynamical system, described by
(2b)

where the additional vector at denotes action
taken by the system at time t.

According to (2a) and (2b), it is the action at that
distinguishes an active dynamical system from a passive
one. Most important, an active dynamical system explores

its environment by taking action at whenever the
environment resides in state xt; we may therefore think of
(xt,at) as a state-action pair. Just as the environment state
xt spans a state space, the action at spans a space of its
own called the action space. The constituents of the action
space may be different modalities, waveforms, functions,
etc., over which the system is able to operate. On this
basis, we say an active dynamical system is of a large-
scale kind due to a combination of three factors:
(i) high dimensionality of the environment state space;
(ii) high computational complexity of the nonlinear

predictive model used in tracking the state of the
environment; and

(iii) high search complexity of the action space.
In contrast, a passive dynamical system merely listens to
its environment; and through observables produced by the
environment, it infers the state of the environment.
Accordingly, a passive dynamical system is said to be of a
large-scale kind solely on the basis of factors (i) and (ii).

The availability of an action space or its absence has
serious implications for the specific functions which a
dynamical system can perform. Specifically, an active
dynamical system is capable of interacting with its
environment; hence, through searching over the action
space for an optimal policy, it has a natural capability to
perform optimal control. On the other hand, a passive
dynamical system is well positioned to model its
environment and use the model for the purposes of
classifying the environment and tracking its state.

Section II of the paper discusses the optimal
scheduling policy in active sensor networks consisting of a
large number of active sensors (not necessarily of the same
type); the policy involves the mapping from past
observations to future actions. Section III discusses the
signal-processing issues that arise in the passive modeling
of multi-function radars in an electronic warfare
environment; the issues of recognition and tracking of
such radars are briefly mentioned. Section IV concludes
the paper.
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II.   MANAGEMENT OF ACTIVE SENSOR
NETWORKS VIA PARTIALLY OBSERVABLE

MARKOV DECISION PROCESSES

In active sensing, we sequentially and adaptively schedule
sensors, modalities, waveforms, or search patterns as a
function of past measurements. The theory of partially
observable Markov decision processes (POMDP) is used
to determine an optimal scheduling policy (i.e., a mapping
from past measurements to a future action) from the
statistical model of the sensor and the environment. Such a
policy is used by the sensor management algorithm. The
unconstrained globally optimal policy is to deploy all
sensors, modes, waveforms, and search patterns
simultaneously but this is impractical since resources such
as energy, computation and deployment agility are always
limited. In general, active sensing must account for
deployment constraints and balance complex tradeoffs
between competing mission goals such as detection of new
targets, tracking and identification of existing targets.

The value of a particular scheduling policy relative to
a specific goal is captured by a reward function that
depends on the true state of target in addition to the goal
and policy. The objective of active sensing in the POMDP
framework is to find policies that will maximize the
average expected reward over time. This leads to optimal
sensor-scheduling policies that depend on the posterior
distribution of the system state conditioned on sensor
measurements. In tracking applications, the system state
describes probabilistically uncertainty in the number of
targets, locations of the individual targets, and movements
of the targets. It may also describe uncertainty in sensor
characteristics (e.g., spatial position, or clutter).

Sensor-scheduling strategies may be myopic,
involving single-stage, one-step prediction, or non-
myopic, involving multi-stage, multi-step prediction. In
the myopic case, sensing actions are taken so as to
maximize the immediate reward and do not attempt to
predict the effect of an immediate action on the more
distant future. Optimal sensor-scheduling policies are
almost always non-myopic, since each action must
maximize all future rewards and therefore such policies
must predict the future value of information gained from
each action. While myopic methods have the advantage
that they are more computationally tractable than non-
myopic methods, they are usually suboptimal. Several
researchers have developed approximate solution
techniques for optimal non-myopic sensor scheduling
(e.g., the general rollout algorithms of [3], the multi-arm
bandit active beam scheduling approximations of [8], the
value-to-go and reinforcement learning (RL)

approximations developed in [5], [6], [7] for active
sensing). In the RL approach, described in more detail
below, training examples of sensing actions, responses,
and the observed system states are used to learn an optimal
sensor-scheduling policy.

A. POMDP Framework
A discounted-reward Markov decision process (MDP) is
defined by a Markovian sequence of states {xt}t>0 taking
values in a state space , a sequence of causal actions
{αt}t>0 taking values in an action space A, and a (possibly
random) reward function Rt = rt(xt,αt) that assigns the cost
incurred (when negative) or the reward gained (when
positive) to the event of being at state xt and taking action
αt. The state space can contain rich information such as
the number of targets present, their locations, their type,
and whether they are fixed or moving. Each action is a
causal function of the state sequence and specifies which
sensor to use, the mode of operation, and where to point
the sensor. The reward system reflects the tradeoffs
between costs of deploying a certain sensor mode and the
gain earned from the measurements it collects. Consider
the scenario where one observes the current state xt,
chooses action αt and observes the state transition to xt+1;
generating the state-action sequence x1,α1;x2;α2;.... This
sequence is called an MDP, since, given xt and αt, xt+1 is
independent of all past states and actions. When only an
indirect measurement yt of the state xt is available, the
action sequence must be based on yt rather than xt, and the
posterior density p(xt|yt,αt;...;y0,α0) carries all relevant
causal information about the state. For this reason,

is called the information

state. The state-action sequence

defines a POMDP. As the theory of POMDP parallels that
of MDPs, we suppress the “tilde” on x in the sequel.

A stationary policy is a map from the state space
to the action space A that specifies the action taken at each
state. Denote the class of all policies by P. The value

function associated with policy , denoted by is
the expected total discounted reward when in state xt=x

and following policy , that is

(3)

where is a discount factor, included to reduce
the value of future rewards as compared with immediate
rewards. The conditional expectation is taken with respect

χ
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to the joint distribution of all the targets. An optimal policy
maximizes the value function for all t, which is defined by
the unique solution to Bellman’s equation:

(4)

Unfortunately, when cardinality of the state and action
spaces are large and the state transition density is either
computationally complicated or not explicitly available,
Bellman’s equation becomes computationally intractable.

B. Q-Learning with Function Approximation
Define the function Q(x,α) as the conditional expectation
on the right-hand side of (4). Q-learning is a special case
of RL using a particular type of stochastic approximation
to approximate the Q-function and extract a near-optimal
policy via αt = maxαQ(xt,α), t = 1,2,.... For POMDPs, Q-
learning cannot be applied directly due to the continuity of
the information state space, which makes the Q-function
infinite-dimensional. Therefore, a finite-dimensional
function approximation is used to approximate the Q-
function, for example, using a with truncated linear basis
expansion

(5)

where φ is a vector of known basis functions and
is an unknown coefficient vector to be approximated.

In batch Q-learning, Q is estimated from a set of
simulated state-action sequences. Specifically, the training
process involves the generation of state, action, next state,
immediate reward 4-tuples over a large number of training
episodes. This set of training episodes is used in batch to
estimate the Q-function for a particular state-action pair.
Given an arbitrary initial value of Qk(x,α) at iteration k =
0, the one-step Q-learning algorithm is given by repeated
application of the update equation

(6)

where each of the 4-tuples
are incurred during the

progress of the MDP, and the discount factor
decreases with t. When γ decreases to zero as a/(b+t)
where (a,b>0), this algorithm converges to the true Q-
function with probability 1, regardless of the actual policy
used in generating the trajectories as long as the state-
action pairs are visited infinitely often [2]. With function
approximation, a simple gradient-descent method is

commonly used to update the estimate  of :

For more details regarding the implementation of Q-
learning with function approximation for active-sensor
management, the reader is referred to [5], [6], [7].

III.  MODELING, RECOGNITION, AND
TRACKING OF MULTI-FUNCTION RADARS

The theory of partially observable Markov decision
processes (POMDP) and related issues also arise in the
study of electronic support (ES), which is a field of
electronic warfare. The function of an ES system is to
infer the state of an uncooperative radar system in a
battlefield environment. This function is achieved by
passively sensing and operating on the sequence of
electromagnetic pulses emitted by the radar. To assist this
critical function, the ES system also exploits prior
knowledge gathered about the radar system that could be
operating in the battlefield.

Much has been written on the study of ES systems
pertaining to previous generations of mechanically
scanned antennas [12]. However, when confronted with
the new generation of multi-function radars (MFRs), the
ES analysis of signals emitted by such radars is
significantly more complex due to two realities:
(i) Phased array antennas are used to electronically scan

the radar environment in a highly agile manner.
(ii) Flexible sophisticated software control algorithms are

used to perform radar functions (i.e., searching,
acquisition, and tracking) on multiple targets,
virtually simultaneously.

Basic to the ES analysis of signals emitted by an MFR is
the development of a model that can facilitate the joint
tasks of MFR recognition and state estimation. To that
end, the MFR is viewed as a discrete-event system, which
speaks some known, or partially known, formal language
[4]. Correspondingly, the sequence of observations of
MFR signals is viewed as strings from this language,
corrupted by measurement noise. In [9], [10], [11], it is
shown that by using prior knowledge about some
particular MFR signal, it is indeed possible to generate a
grammar that describes the radar language. Such an
approach to the modeling of MFRs is referred to as
syntatic modeling. The important point to note here is that
syntatic models are compact formal representations that
can form a homogeneous basis for modeling the complex
dynamics being performed by MFRs. The adoption of
syntatic models for MFRs as proposed in [9], [10], [11],
represents the basis of a model-centric approach to the

V x( )=max
α

E r xt α,( )+βV xt+1( ) xt{ } x αt, =α=
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design of ES systems, with the syntatic model being
viewed as a compressor of data in the electronic warfare
library pertaining to the MFR in question. This modern
approach to the design of ES systems should be contrasted
with the data-centric approach adopted in the traditional
electronic warfare literature.

Given the syntatic models of possible MFRs operating
in a battlefield environment, we may now envision the
design of an ES system whose function is to perform the
following pair of functions in real time:
(i) Recognition, the purpose of which is to infer the

particular type of MFR that is responsible for emitting
the observed sequence of electromagnetic pulses.

(ii) State estimation, the purpose of which is to infer the
state (i.e., searching, acquisition, or tracking mode) in
which the MFR is operating.

These two functions are inter-related and must therefore
be performed jointly. In point (ii), note also that the MFR
state is not interesting; rather, what is important is the

mapping of MFR state into an instantaneous threat.1

In their own respective ways, MFR recognition and
state estimation involve making decisions in the face of
uncertainty. The sources of uncertainty include
measurement noise, ES system imperfections, and
incomplete knowledge about the MFR that would be
operating in the battlefield environment. This incomplete
knowledge may be viewed as an information gap. In any
event, given the serious consequences of the decision-
making process, optimality of the ES system may have to
be sacrificed in favor of robustness. In this context, the
strategy referred to as “information-gap decision theory:
decisions under severe uncertainty” in [1] deserves
particular attention.

There is another issue that needs to be considered in
the design of ES systems, namely, the allocation of
resources. Recognizing that computing resources are
limited and faced with the possibility of having to deal
with more than one MFR, we have the setting for an
additional requirement: which particular MFR is likely to
pose the greatest threat and therefore warrants the focusing
of limited resources? This problem becomes even more
challenging when the MFRs form a cooperative network
designed to share information between themselves.

IV.  CONCLUSION

The study of large-scale dynamical systems is emerging as
one of the fields likely to dominate the twenty-first
century. This field of study is multidisciplinary in nature,
permeating many areas:
• Engineering, exemplified by signal processing,

control, communications, computers and biomedical;
• Physical sciences, exemplified by geophysics, and

nanoscience;
• Biological sciences, exemplified by neuroscience, and

neural-information processing systems;
• Economics.
In this introductory paper, we have highlighted some
fundamental issues that arise in the study of active and
passive dynamical systems that are of a large-scale kind.
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1. On a related note, ES has a complementary
field known as electronic attack, where some
action (e.g., jamming) is taken to defeat the
threat.
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