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ABSTRACT

We address the problem of configuring a foveal sensor to
track multiple, closely spaced moving targets. The foveal
sensor has a high acuity region, whose center and extent
can be configured, surrounded by a low acuity region. We
study three heuristic approaches to extend a near-optimal
greedy configuration rule for a single target to multiple tar-
gets: simultaneously observe all targets (SO), center the
foveal region on each target in turn (TO), and center the
foveal region on the target with the worst position estimate
(WO). The target tracker is implemented using a particle
filter with joint probabilistic data association (JPDA). Addi-
tionally, we implement two different independent-partition
proposal distributions using JPDA and global nearest neigh-
bor (GNN). Monte Carlo simulations show that the WO rule
outperforms the other rules and that the IP-JPDA proposal
gives better tracking performance.

I. INTRODUCTION

Tracking multiple, closely-spaced targets using an attentive
sensor in heavy clutter is a challenging problem. Previous
work [1, 2] developed attentive sensor control strategies to
track single target. In this paper, we investigate strategies
to track multiple targets moving in one dimension with a
foveal sensor. The foveal sensor has a high acuity region,
whose center and extent can be configured, surrounded by
a low acuity region; target positions within the high acu-
ity foveal region are observed more accurately. The control
strategies are obtained by extending a near-optimal, greedy
algorithm from single target to multiple targets using three
approaches: simultaneously observe all targets (SO), cen-
ter the foveal region on each target in turn (TO), and center
the foveal region on the target with the worst position esti-
mate (WO). The target tracker is implemented using a joint
multi-target probability density (JMPD) particle filter with
joint probabilistic data association (JPDA). Our simulation
results show the best performance is obtained by the WO
rule.

This work supported by AFOSR under grant F49620-03-1-0117.

A second contribution of this paper is a novel indepen-
dent partition (IP) proposal scheme for the particle filter.
Previous work [3, 4] developed the independent partition
method to reduce the number of particles (and hence the
computational burden) necessary to implement the particle
filter. That work used sensor arrays and unified target track-
ing (i.e. tracking with sensor models that do not require
data association). We have adapted the IP proposal method
to include data association using two different methods:
GNN and JPDA. IP-JPDA provides better performance in
the presence of clutter.

The rest of this paper is organized as follows: Section II
describes the target dynamics and observation models. Sec-
tion III briefly outlines the tracker algorithm. We present
three foveal sensor configuration algorithms in Section IV,
and introduce the IP-JPDA and IP-GNN proposal schemes
in Section V. Section VI compares the three configuration
algorithms as well as IP-GNN and IP-JPDA through Monte
Carlo simulations. Conclusions are given in Section VII.

II. TARGET DYNAMICS AND SENSOR MODELS

We consider Tmax targets moving in one dimension. Let xt
k

denote the state vector of target t at discrete time k:

x
t
k =

[
Xt

k Ẋt
k

]�
.

where Xt
k is position and Ẋt

k is velocity. The state vector
for a given target is also called a partition. We use a constant
velocity target motion model:

x
t
k =

[
1 ∆t

0 1

]
x

t
k−1 + n

t
k−1,

where ∆t is the time difference between measurements, and
n

t
k−1 is a zero-mean Gaussian process with covariance Q.

The multitarget state vector for Tmax targets is composed of
the individual partitions:

xk =
[
x

1
k

�
,x2

k

�
, . . . ,xTmax

k

�]�
.
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The foveal sensor provides observations of the target po-
sition corrupted by noise. The sensor has two adjustable
parameters: dk sets the location of the foveal region, while
ck sets the gain at the center of the foveal region. The ob-
servation for target t is obtained from its position as

zk = arctan
(
ck[Xt

k − dk]
)

+ vt
k,

where vt
k is white Gaussian noise with variance R.

Once configured, the foveal sensor provides measure-
ments of target positions; it detects each target with a known
probability PD . The measurement vector at time k is zk =[
z1

k, z2
k, . . . , zMk

k

]�
. Its elements consist of observed target

positions and clutter. We model clutter as uniformly dis-
tributed over the surveillance region volume V; the number
of false alarms is Poisson distributed with parameter λV,
where λ is the spatial false alarm density and is known to
the tracker.

III. TRACKER ALGORITHM

The nonlinearity of the foveal sensor observation model ne-
cessitates the use of a particle filter in this application. We
use Monte Carlo joint probabilistic data association [5] and
an independent partition proposal distribution (described in
Section V) to estimate the target state and provide informa-
tion necessary to configure the foveal sensor. The poste-
rior distribution of xk given z1 through zk is approximated
by Tmax sets of Npart particles {xi

k}Npart

i=1 and associated

weights {ωi
k}Npart

i=1 . Table 1 outlines our tracking algorithm.

IV. SENSOR CONFIGURATION

We improved the performance of the single-target config-
uration rule in [1] by examining the characteristics of the
near-optimal solution obtained using SPSA [7] for R ∈
[0, 0.4]. The foveal center d is positioned at the predicted
target position. The foveal gain c is set to

c =

{
π√

P+(−1.8 log10 R)
, 0.4 ≥ R ≥ 0.0146

π

3.30
√

P+
, 0 ≤ R < 0.0146

(1)

where P+ is the predicted position error variance.
From this single target rule, we have developed three

foveal sensor configuration rules for multi-target tracking.
SO is designed to observe all targets at the same time. In or-
der to let all targets fall within the high acuity foveal region,
d is set to the point midway between the two most widely
separated targets (say, i and j). Denoting the distance be-
tween targets i and j as Dij , we set the gain as:

c =

⎧⎨
⎩

π

(Dij+0.9(
√

P
+

i
+

q
P

+

j
))(− log10 R)

, 0.4 ≥ R ≥ 0.0146

π

(Dij+1.65(
√

P
+

i
+

q
P

+

j
))

, 0 ≤ R < 0.0146

Table 1. Multiple Target Tracking Algorithm

1. Generate {xi
0}Npart

i=1 ; set {ωi
0}Npart

i=1 = 1
Npart

.

2. Compute x̂0 =
∑Npart

i=1 ωi
0x

i
0 and

P̂0 =
∑Npart

i=1 ωi
0(x

i
0 − x̂0)(x

i
0 − x̂0)

T .
3. Set k = 1.
4. Compute the predicted state estimate x̂

+
k = F x̂k−1

and predicted error covariance P+
k = FP̂k−1F

′

+ Q.

5. Configure dk and ck as in Section IV.
6. Obtain zk using the configured sensor.
7. For each target t, propose a set of partitions

{xt,i
k }Npart

i=1 and associated bias terms {bt,i
k }Npart

i=1 via
the IP-GNN or IP-JPDA algorithm of Section V; con-
catenate all partitions to form particles

x
i
k =

[
x

1,i
k

�
,x

2,i
k

�
, . . . ,x

Tmax,i
k

�]�
.

8. For i = 1, . . . , Npart,

ωi
k = ωi

k−1

∑NH

l=1 p(zk, πl
k|xi

k)∏Tmax

t=1 b
t,i
k

,

where
{
πl

k

}NH

l=1
is the set of feasible associations of

observations to targets, NH is the total number of fea-
sible hypotheses, and p(zk, πl

k|xi
k) is given in [5].

9. For i = 1, . . . , Npart, normalize weights

ωi
k =

ωi
k∑Npart

i=1 ωi
k

.

10. Permute particles by the K-means algorithm[4].

11. Compute the state estimate x̂k =
∑Npart

i=1 ωi
kx

i
k, error

covariance P̂k =
∑Npart

i=1 ωi
k(xi

k − x̂k)(xi
k − x̂k)�.

12. Calculate N̂eff = 1PNpart

i=1
(ωi

k
)2

and perform re-

sampling if N̂eff < NT .
13. Set k ← k + 1 and go to step 4.

where P+
i and P+

j are the predicted position error variances
of targets i and j. In TO, the foveal region is centered on
each target in turn, while the gain is computed using (1)
with P+ of the centered target. In WO, the foveal region is
centered on the target that has the largest predicted position
error variance, and the gain is also computed using (1) with
P+ of the centered target.

V. INDEPENDENT PARTITION PROPOSALS

The independent partition approach proposes a collec-
tion of particles for each partition {xt,i

k

∗}Npart

i=1 ; weights

{wt,i
k }Npart

i=1 , which depend on the observation zk, are com-
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Fig. 1. Average squared position error (ASE) for three tar-
gets (t1, t2, and t3) for the SO, TO and WO heuristics with
no clutter.

puted for each partition. Computation of the weight re-
quires that the elements of zk be associated with each par-
tition. The proposed particles for each partition are re-
sampled according to these weights to obtain a collection
{xt,i

k }Npart

i=1 . These partitions are arranged into particles:

x
i
k =

[
x

1,i
k

�
,x

2,i
k

�
, . . . ,x

Tmax,i
k

�]�
. We investigate two

association approaches to implement IP proposal distribu-
tions: global nearest neighbor (IP-GNN) and joint proba-
bilistic data association (IP-JPDA).

The GNN method makes one-to-one assignments be-
tween the elements of zk and the partitions x

t,i
k of particle

x
i
k to minimize the total distance between measurements

and predicted measurements [6]. The set of assignments is
then used to compute the weight assigned to each partition.

The JPDA method computes weights for a given partition
x

t,i
k by applying JPDA as if it were the only target present

(treating observations from other targets as false alarms)..
This requires enumerating all association hypotheses be-
tween x

t,i
k and the elements of zk; we denote the set of

possible hypothesis as {πt,l
k }NHpart

l=1 . Here, NHpart
is the to-

tal number of association hypotheses for the partition x
t,i
k .

Table 2 shows the details of the IP-JPDA proposal scheme.

VI. SIMULATION RESULTS

We evaluated performance by examining the percentage of
Monte Carlo runs in which the tracker converges (i.e. po-
sition errors for all targets remain below a given threshold
during the last ten time steps of each run) and, for converged
runs, the average squared error (ASE) in the estimated posi-

Table 2. IP-JPDA Subroutine for Target t

1. For each particle i = 1, . . . , Npart,

(a) Sample x
t,i
k

∗ ∼ p(xk|xt,i
k−1)

(b) For each π
t,l
k , compute p(zk, π

t,l
k |xt,i

k

∗
)

(c) Compute w
t,i
k =

∑NHpart

l=1 p(zk, π
t,l
k |xt,i

k

∗
)

2. Normalize {wt,i
k }Npart

i=1 to sum to 1

3. For each particle i = 1, . . . , Npart, sample an index

j according to the distribution {wt,i
k }Npart

i=1 ; set xt,i
k =

x
t,j
k

∗
and b

t,i
k = w

t,j
k .
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Fig. 2. ASE for the SO, TO and WO heuristics in clutter.

tion of each target. All evaluations used 1000 Monte Carlo
simulation runs with q = 0.01, R = 0.05, ∆t = 1, and
Npart = 400. The initial particles were sampled from a
Gaussian distribution whose mean is the true targets’ state
x0 and whose covariance is P0 = diag(1, 0.1).

We compared the performance of the SO, TO, and WO
approaches for both IP-JPDA and kinematic prior (KP) pro-
posals for no clutter (PD = 1, λV = 0) and clutter
(PD = 0.9, λV = 0.5). Table 3 and Fig. 1 show percent
convergence and ASE as a function of time for the SO, TO
and WO heuristics tracking three targets in no clutter. Ta-
ble 4 and Fig. 2 show the corresponding performance with
clutter. The performance of IP-JPDA is always better than
that of KP, and WO and TO with IP-JPDA proposal perform
better than SO. Also, WO appears to be generally slightly
better than TO in the presence of clutter.

We also compared IP-JPDA and IP-GNN. Table 5 and
Fig. 3 show that IP-JPDA has the same performance track-
ing 2 targets as IP-GNN when PD = 1 and PFA = 0;
while IP-JPDA has better performance than IP-GNN when

V - 943

➡ ➡



Table 3. Percentage of runs that converged with no clutter
Proposal method SO TO WO

IP-JPDA 90.5% 99.5% 99.7%
KP 88.5% 97.1% 96.4%

Table 4. Percentage of runs that converged in clutter
Proposal method SO TO WO

IP-JPDA 81.1% 90.7% 92.5%
KP 80.6% 75.8% 83.1%

PD = 0.9 and λV = 0.5. This is because IP-JPDA can
counteract the negative influence of false measurement-to-
target assignments. To further test the robustness of IP-
JPDA, we applied it to two different scenarios in clutter in
which three moving targets have different initial positions
and velocities. Fig. 4 shows the true and estimated trajecto-
ries; the IP-JPDA proposal scheme works for both cases.

VII. CONCLUSIONS

In this paper, we introduce an attentive tracker for mul-
tiple closely spaced targets using an adaptive foveal sen-
sor. Three foveal sensor configuration rules are studied and
compared by Monte Carlo simulations. The WO rule gen-
erally outperforms the TO and SO rules for either IP-JPDA
or KP proposals. In addition, both IP-JPDA and IP-GNN
proposal approaches are presented and investigated. Monte
Carlo simulations show better performance is obtained by
IP-JPDA than by IP-GNN in the presence of clutter.
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