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ABSTRACT

Ion channels are biological nanotubes formed by large pro-
tein molecules. In this paper we address the permeation
problem which deals with the propagation of individual ions
in an ion channel at an Angstrom unit spatial scale and
femto second time scale. We present an adaptive controlled
Brownian dynamics simulation approach to predict the struc-
ture of an ion channel. The Brownian dynamics algorithm
is coupled with a stochastic gradient algorithm to match the
simulated current with experimentally determined currents.

1. INTRODUCTION

All living cells are surrounded by a cell membrane, com-
posed of two layers of phospholipid molecules, called the
lipid bilayer. Ion channels are biological nanotubes in the
cell membrane formed by large protein molecules, that al-
low ions to propagate into and out of the cell. These ion
channel biological nanotubes – although they are typically
the size of angstrom units (10−10 m), i.e., an order of mag-
nitude smaller in radius and length compared to carbon nan-
otubes that are used in nano-devices. All electrical activities
in a cell are controlled by ion channels. Furthermore sev-
eral diseases such as epilepsy, Parkinson’s disease, etc are
caused by malfunctioning ion channels.

Recently there have been enormous strides in our un-
derstanding of the structure-function relationships in bio-
logical ion channels. For example, the 1991 Nobel prize
in medicine went to Neher and Sakmann who invented the
patch-clamp device – which can isolate a single ion channel
and measure the current across it. In recent breakthroughs,
the crystal structures of the bacterial potassium channel,
mechanosensitive channel and chloride channel have been
determined from crystallographic analysis [1, 2]. The 2003
Nobel prize in Chemistry was awarded to Prof. McKinnon
who determined the structure of a Potassium ion channel.
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The aim of this paper is to show how controlled Brow-
nian dynamics simulation can be used to estimate struc-
tural information about an ion channel. BD simulation for
ion channel structure prediction is currently a hot area in
biophysics – we show in this paper that ideas in statistical
signal processing such as Markov Chain Monte Carlo and
stochastic gradient schemes can be profitably used to effi-
ciently estimate these structural parameters of an ion chan-
nel. We refer the reader to [3, 4, 5] and the special issue [6]
for details on ion channels written by experts in the area.

2. LEVELS OF ABSTRACTION FOR MODELLING
ION CHANNELS

The ultimate aim of theoretical biophysicists is to provide a
comprehensive physical description of biological ion chan-
nels. At the lowest level of abstraction is the ab initio quan-
tum mechanical approach, in which the interactions between
the atoms are determined from first-principles electronic struc-
ture calculations. Due to the extremely demanding nature
of computations, its applications are limited to very small
systems at present. A higher level of modeling abstraction
is to use classical molecular dynamics. Here, simulations
are carried out using empirically-determined pair-wise in-
teraction potentials between the atoms, via ordinary differ-
ential equations (Newton’s equation of motion). However,
it is not computationally feasible to simulate the ion channel
long enough to see permeation of ions across a model chan-
nel. For that purpose, one has to go up one further step in
abstraction to stochastic dynamics, of which Brownian dy-
namics (BD) is the simplest form, where water molecules
that form the bulk of the system in ion channels are stochas-
tically averaged and only the ions themselves are explicitly
simulated. Thus, instead of considering the dynamics of in-
dividual water molecules, one considers their average effect
as a random force or Brownian motion on the ions. This
treatment of water molecules can be viewed as a functional
central limit theorem approximation. In BD, it is further as-

V - 9290-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



sumed that the protein is rigid. Thus, in BD, the motion of
each individual ion is modeled as the evolution of a stochas-
tic differential equation, known as the Langevin’s equation.

A still higher level of abstraction is the Poisson-Nernst-
Planck (PNP) theory which is based on the continuum hy-
pothesis of electrostatics and the mean-field approximation.
Here, ions are treated not as discrete entities but as contin-
uous charge densities that represent the space-time average
of the microscopic motion of ions. For narrow ion channels
where continuum electrostatics does not hold – the PNP the-
ory does not adequately explain ion permeation.
Remark. Bio-Nanotube Ion Channel vs. Carbon Nanotube:
There has recently been much work in the nano-technology
literature on carbon nanotubes and their use in field effect
transistors (FETs). BD ion channel models are more com-
plex than that of a carbon nanotube. Biological ion channels
have radii of between 2 Å to 6 Å . In these narrow conduits
formed by the protein wall, the force impinging on a perme-
ating ion from induced surface charges on the water-protein
interface becomes a significant factor. This force becomes
insignificant in carbon nanotubes used in FETs with radius
of approximately 100 Å , which is large compared to the
Debye length of electrons or holes in Si. Thus the key differ-
ence is that while in carbon nanotubes point charge approxi-
mations and continuum electrostatics holds, in ion channels
the discrete finite nature of each ion needs to be considered.

3. BROWNIAN DYNAMICS SIMULATION MODEL
OF AN ION CHANNEL

3.1. Brownian Dynamics Simulation Setup

The aim is to obtain structural information, i.e., determine
channel geometry and charges in the protein that form the
ion channel. Fig.1 shows a schematic illustration of a BD
simulation assembly for a particular example of an antibi-
otic ion channel called a gramicidin-A ion channel. The ion
channel is placed at the center of the assembly. The atoms
forming the ion channel are represented as a homogeneous
medium with a dielectric constant of 2 (shaded in Fig.1).
Then, a large reservoir with a fixed number of positive ions
(e.g., K+ or Na+ ions) and negative ions (e.g., Cl− ions) is
attached at each end of the ion channel. The electrolyte in
the two reservoirs comprises of 55 M (moles) of H2O , and
150 mM concentrations of Na+ and Cl− ions.

3.2. Mesoscopic Permeation Model of Ion Channel

Our permeation model for the ion channel comprises of 2
cylindrical reservoirsR1 andR2 connected by the ion chan-
nel C as depicted in Fig.1, in which 2N ions are inserted
(N denotes a positive integer). In Fig.1, as an example
we have chosen a gramicidin-A antibiotic ion channel – al-
though the results below hold for any ion channel. These

Fig. 1. Gramicidin-A Ion Channel Model

2N ions comprise of (i) N positive charged ions indexed
by i = 1, 2, . . . , N . Of these, N/2 ions indexed by i =
1, 2, . . .N/2 are in R1 and N/2 ions indexed by i = N/2+
1, . . . , 2N are in R2. Each Na+ ion has charge q+, mass
m(i) = m+ = 3.8 × 10−26 kg and frictional coefficient
m+γ+, and radius r+. (ii) N negative charge ions ions in-
dexed by i = N + 1, N + 2, . . . , 2N . Of these, N/2 ions
indexed by i = N = 1, . . . 3N/2 are placed in R1 and
the remaining N/2 ions indexed by i = 3N/2 + 1, . . . , 2N
are placed in R2. Each negative ion has charge q(i) = q−,
mass m(i) = m−, frictional coefficient m−γ− and radius
r−. R = R1 ∪ R2 ∪ C denotes the open set comprised of
the interior of the reservoirs and ion channel.

Let t ≥ 0 denote continuous time. Each ion i, moves in
3-dimensional space over time. Let x(i)

t = (x(i)
t , y

(i)
t , z

(i)
t )′ ∈

R and v(i)
t ∈ R

3 denote the position and velocity of ion i

and time t. The three components x
(i)
t , y

(i)
t , z

(i)
t of x(i)

t ∈
R are, respectively, the x, y and z position coordinates.
An external potential Φext

λ (x) is applied along the z axis
of Fig.1, i.e., with x = (x, y, z), Φext

λ (x) = λz, λ ∈
Λ. Here Λ denotes a finite set of applied potentials. Typi-
cally Λ = {−200,−180, . . . , 0, . . . , 180, 200} mV/m. Due
to this applied external potential, the Na+ ions drift from
reservoir R1 to R2 via the ion channel C in Fig.1. Let
Xt =

(
x(1)′

t ,x(2)′
t ,x(3)′

t , . . . ,x(2N)′
t

)′ ∈ R2N and Vt =(
v(1)′

t ,v(2)′
t ,v(3)′

t , . . . ,v(2N)′
t

)′ ∈ R
6N denote the veloci-

ties of of all the 2N ions. The position and velocity of each
individual ion evolves according to the following continu-
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ous time stochastic dynamical system:

x(i)
t = x(i)

0 +
∫ t

0

v(i)
s ds (1)

m+v(i)
t = m+v(i)

0 −
∫ t

0

m+γ+v(i)
s ds +

∫ t

0

F
(i)
θ,λ(Xs)ds

+ b+w(i)
t , i ∈ {1, 2, . . . , N} (2)

m−v(i)
t = m−v(i)

0 −
∫ t

0

m−γ+v(i)
s ds +

∫ t

0

F
(i)
θ,λ(Xs)ds

+ b−w(i)
t , i ∈ {N + 1, N + 2, . . . , 2N}. (3)

Equations (2) and (3) constitute the well known Langevin
equations. The process {w(i)

t } denotes a 3 dimensional
Brownian motion, which is component wise independent.
The constants b+ and b− are, respectively, b+2 = 2m+γ+kT ,
b−2 = 2m−γ−kT . In (2), (3), F (i)

θ,λ(Xt) = −q(i)∇
x

(i)
t

Φ(i)
θ,λ(Xt)

represents the systematic force acting on ion i, where the
scalar valued process Φ(i)

θ,λ(Xt) is the total electric potential
experienced by ion i given the position Xt of the 2N ions.
λ is the applied external potential. The potential Φ(i)

θ,λ(Xt)
experienced by each ion i comprises of 5 components

Φ(i)
θ,λ(Xt) = Uθ(x

(i)
t )+Φext

λ (x(i)
t )+ΦIW (x(i)

t )+ΦC,i+ΦSR,i.
(4)

The Potential of mean force (PMF) denoted Uθ(x
(i)
t ) in (4),

comprises of electric forces acting on ion i when it is in or
near the ion channel (nanotube C in Fig.1). The PMF Uθ

is a smooth function of the ion position x(i)
t and depends

on the structure of the ion channel. Therefore estimating
Uθ(·) yields structural information about the ion channel.
Φext

λ (x) = λz denotes the potential on ion i due to the ap-
plied external field, ΦC,i(Xt) denotes the Coulomb interac-
tion between ion i and all the other ions; ΦIW also called
the Lennard-Jones potential ensures that the position x(i)

t of
all ions i = 1, . . . , 2N lie in Ro. Finally, in (4) ΦSR,i(Xt)
denotes the short range Coulomb interaction.
Remark: The BD approach is a stochastic averaging theory
framework that models the average effect of water molecules:
1. The friction term mγv(i)

t dt captures the average effect of
the ions driven by the applied external electrical field bump-
ing into the water molecules every few femto seconds. The
frictional coefficient is given from Einstein’s relation.
2. The Brownian motion term w(i)

t also captures the effect
of the random motion of ions bumping into water molecules
and is given from the fluctuation-dissipation theorem.

4. CONSISTENCY OF BD SIMULATIONS

Assume that the system (1), (2), (3) comprising 2N ions
has attained stationarity with the ion channel C closed. It

is proved [3, 4], that this system is positive Harris recur-
rent and converges to its stationary distribution exponen-
tially fast. Then the ion channel is opened so that ions can
diffuse into it. Let τ

(θ,λ)
R1,R2

denote the mean minimum time
for any of the N/2 Na+ ions inR1 to travel toR2 via the ion

channel C, and τ
(θ,λ)
R2,R1

denote the minimum time for any of
the N/2 Na+ ions in R2 to travel to R1:It can be shown [3]

that the mean first passage times τ
(θ,λ)
R1,R2

and τ
(θ,λ)
R2,R1

satisfy
a boundary valued partial differential equation. The mean
current flowing from R1 via the ion channel C into R2 is

I(θ,λ) = q+
(
1/τ

(θ,λ)
R1,R2

− 1/τ
(θ,λ)
R2,R1

)
(5)

It is not possible to obtain explicit closed form expressions
for the mean first passage times τ

(θ,λ)
R2,R1

and τ
(θ,λ)
R2,R1

and
hence the current I(θ) in (5). The aim of BD simulation
is to estimate these quantities by simulating the stochastic
dynamical system (1), (2), (3). In this section we show
show that the current estimates Î(θ,λ)(L) (defined below)
obtained from a BD simulation are statistically consistent.

Each iteration l, l = 1, 2, . . . , L, of the BD algorithm
runs for a random number of discrete-time steps until an
ion crosses the channel. Denote these random first passage
times as τ̂

(l)
R1,R2

and τ̂
(l)
R2,R1

. LR1,R2 counts how many
Na+ ions have crossed from R1 to R2 and LR2,R1 counts
how many Na+ ions have crossed from R2 to R1. Note
LR1,R2 + LR2,R1 = L.

Algorithm 1 Brownian Dynamics Simulation Algorithm

• Input parameters θ for PMF and λ external potential.

• For l = 1 to L iterations:
Step 1. Initialize all 2N ions according to stationary
distribution π

(θ,λ)
∞ . Open ion channel at discrete time

k = 0 and set k = 1.
Step 2. Propagate all 2N ions according to BD system
until time k∗ when ion crosses channel.

– If ion k∗ crossed ion channel fromR1 to R2, set
τ̂

(l)
R1,R2

= k∗. Update LR1,R2 = LR1,R2 + 1.

– If ion crossed ion channel from R2 to R1, set
τ̂

(l)
R2,R1

= k∗. Update LR2,R1 = LR2,R1 + 1.

• Compute the mean first passage time τ̂
(θ,λ)
R1,R2

(L), τ̂ (θ,λ)
R2,R1

(L)
and mean current estimate after L iterations as

Î(θ,λ)(L) = q+
(
1/τ̂

(θ,λ)
R1,R2

(L) − 1/τ̂
(θ,λ)
R2,R1

(L)
)

.

Theorem 1 (Consistency of BD) For fixed PMF θ ∈ Θ and
external potential λ ∈ Λ, the ion channel current estimate
Î(θ,λ)(L) obtained from the BD simulation Algorithm 1 is
strongly consistent, i.e., limL→∞ Î(θ,λ)(L) = I(θ,λ) w.p.1
where I(θ,λ) is the mean current defined in (5).
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5. CONTROLLED BD FOR PMF ESTIMATION

In this section, we outline a novel extension of BD simula-
tion for estimating the PMF of an ion channel. This exten-
sion involves a simulation based learning control algorithm
that dynamically adapts the evolution of the BD simulation.
The complete formalism, convergence proofs and numerical
results are presented in [3, 4].

We estimate the PMF Uθ parameterized by a finite di-
mensional parameter θ (e.g., θ are the means variances and
mixture weights of a Gaussian basis function), by comput-
ing the parameter θ that optimizes the fit between the mean
current I(θ,λ) (defined above in (5)) and the experimentally
observed current y(λ) defined below. There are two rea-
sons why estimating the PMF Uθ is useful: First, it allows
us to determine the position and depth of the potential wells
and barriers in the ion channel. Second, estimating the PMF
permits us to compute the effective surface charge density
along the protein of the inside surface of the ion channel that
reproduces the PMF Uθ, see [3, 4] for details.

From experimental data, an accurate estimate of the I-
V curve of an ion channel can be obtained. This I-V curve
depicts the the actual current y(λ) flowing through an ion
channel for various external applied potentials λ ∈ Λ. For
fixed applied field λ ∈ Λ, define the square error loss func-
tion between the mathematically defined mean current I (θ,λ)

in (5) and the true current y(λ) as Q(θ, λ) = |I (θ,λ) −
y(λ)|2. Define the total loss function obtained by adding
the square error over all the applied fields λ ∈ Λ on the I-V
curve as Q(θ) =

∑
λ∈Λ Q(θ, λ). The optimal PMF Uθ∗ is

determined by the parameter θ∗ that best fits the mean cur-
rent I(θ,λ) to the experimentally determined I-V curve of an
ion channel, i.e., θ∗ = argminθ∈Θ Q(θ). However, this de-
terministic optimization cannot be directly carried out, since
it is not possible to obtain explicit closed form expressions
for the current I(θ,λ). This motivates us to formulate the
estimation of the PMF as a stochastic optimization problem
where I(θ,λ) is replaced by estimates from BD simulation.

Suppose that the BD simulation Algorithm 1 is run in
batches indexed by batch number n = 1, 2, . . .. In each
batch n, the PMF parameter θn is selected, the BD Algo-
rithm 1 is run over L iterations, and the estimated current
Î
(θ,λ)
n is computed. Since as proved in Theorem 1 these es-

timates are asymptotically unbiased,, we can re-express the
objective function Q(θ, λ) = |I(θ,λ) − y(λ)|2 as

Q(θ, λ) =
(
E

{
Î(θ,λ)
n

}
−y(λ)

)2

, Q(θ) =
∑
λ∈Λ

Q(θ, λ).

(6)
To solve the stochastic optimization problem by a simu-

lation based optimization approach, we need to evaluate un-
biased estimates Qn(θ, λ) of the loss function and deriva-
tive estimates ∇̂θQn(θ, λ). The estimation of the deriva-

tive ∇̂θQn(θ, λ) involves using recent sophisticated tech-
niques in Monte-Carlo gradient estimation [7]. In [4] we
present several such algorithms including the Kiefer Wol-
fowitz algorithm which evaluates derivate estimates as finite
differences, Simultaneous Perturbation Stochastic Approx-
imation (SPSA) which evaluates the derivatives in random
directions (and thus saves computational cost), and path-
wise infinitesimal perturbation analysis (IPA) gradient esti-
mators, see [4] for complete details and convergence proofs.

The controlled BD simulation algorithm for estimating
the PMF is schematically depicted in Fig.2 where n = 0, 1, . . .,
denotes batch number.

̂∇θQn(θ, λ)

Brownian
Dynamics
Simulation

Loss function

evaluation

Gradient
Estimator

Algorithm

Stochastic

θn Î
(θ,λ)
n Qn(θ, λ)

Gradient

Fig. 2. Controlled BD Simulation for PMF Estimation
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