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ABSTRACT

Particle filtering techniques are a popular set of simulation-
based methods to perform optimal state estimation in non
linear non Gaussian dynamic models. However, in applica-
tions related to control and identification, it is often neces-
sary to be able to compute the derivative of the optimal fil-
ter with respect to parameters of the dynamic model. Sev-
eral methods have already been proposed in the literature.
In experiments, the approximation errors increase with the
dataset length. We propose here original particle methods
to approximate numerically the filter derivative. In simula-
tions, these methods do not suffer from the problem men-
tioned. Applications to batch and recursive parameter esti-
mation are presented.

Keywords: Optimal Filtering, Parameter Estimation, Se-
quential Monte Carlo, State-Space Models, Stochastic Ap-
proximation.

1 Introduction

1.1 State-Space Models

Let {Xn}n≥0 and {Yn}n≥1 be R
p and R

q-valued stochastic pro-
cesses defined on a measurable space (Ω,F) and θ ∈ Θ where Θ
is an open subset of R

k. The process {Xn}n≥0 is an unobserved
(hidden) Markov process of initial density µ; i.e. X0 ∼ µ, and
Markov transition density fθ (x′|x); i.e.

Xn+1|Xn = x ∼ fθ ( ·|x) . (1)

One observes the process {Yn}n≥1. It is assumed that the observa-
tions conditioned upon {Xn}n≥0 are independent with marginal
density gθ (y|x) ; i.e.

Yn|Xn = x ∼ gθ ( ·|x) . (2)

This class of models includes many nonlinear and non-Gaussian
time series models such as

Xn+1 = ϕθ (Xn, Vn+1) , Yn = ψθ (Xn, Wn)

where {Vn}n≥1 and {Wn}n≥1 are independent sequences.
Notation: for any sequence zk, let zi:j = (zi, zi+1, . . . , zj) .

2 Optimal Filter and Its Derivative

The optimal filter is the posterior density of Xn given the obser-
vation Y1:n denoted pθ (xn|Y1:n). Introducing an arbitrary dis-
tribution qθ (xn|Yn, xn−1) whose support includes the support of

gθ (Yn|xn) fθ (xn|xn−1), one can write

pθ (xn|Y1:n) ∝∫
αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1) pθ (xn−1|Y1:n−1) dxn−1

(3)
where

αθ (xn−1:n, Yn) =
gθ (Yn|xn) fθ (xn|xn−1)

qθ (xn|Yn, xn−1)
. (4)

Particle methods are typically used to approximate numerically
these recursions for non linear non Gaussian models, [5].

In applications such as parameter estimation and control, it is
often of interest to approximate the derivative of the filter∇pθ (xn|Y1:n) .
Under regularity assumptions, we obtain the following recursion
for the filter derivative by taking the derivative of (3)

∇pθ (xn|Y1:n) = πθ (xn, Yn) − pθ (xn|Y1:n)
∫

πθ (xn, Yn) dxn

where

πθ (xn, Yn) =[∫ ∫
αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1) pθ (xn−1|Y1:n−1) dxn−1:n

]−1

×{∫ ∇αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1) pθ (xn−1|Y1:n−1) dxn−1

+
∫

αθ (xn−1:n, Yn)∇qθ (xn|Yn, xn−1) pθ (xn−1|Y1:n−1) dxn−1

+
∫

αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1)∇pθ (xn−1|Y1:n−1) dxn−1

}
(5)

The main objective of this paper is to derive particle methods
to approximate ∇pθ (xn|Y1:n) .

2.1 Contributions

There has been many papers devoted to particle filtering over the
last few years. However, only few authors have addressed the
problem of computing the filter derivative. The first algorithm was
proposed in [3] for a specific continuous-time model and [7] for an
extension to more general partially observed diffusions. An algo-
rithm that uses a different resampling strategy has been proposed
for general discrete-time models [4]. None of these algorithms ap-
pear satisfactory and experiments demonstrate that the approxima-
tion errors they produce tend to increase with the datalength. We
propose here several original methods which appear in simulation
not to suffer from these problems.

In Section 2, we detail a particle method for filter derivative
which applies to general non linear non Gaussian models and dis-
cuss briefly their extensions for conditionally linear Gaussian mod-
els and partially observed Gaussian models. In Section 3, we show
how it is possible to use the filter derivative so as to perform batch
and recursive parameter estimation and present several applica-
tions.
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3 Particle Methods for Filter Derivative

3.1 Methodology

The filter derivative ∇pθ (xn|Y1:n) is a signed measure; i.e. it can
take positive and negative values. The basic idea of the paper in
[3], which is adopted in [4], is to approximate both the filter and
its derivative by the same set of particles but weighted differently;
i.e.

p̂θ (xn|Y1:n) =

N∑
i=1

α(i)
n δ

(
xn − X(i)

n

)
, (6)

∇̂pθ (xn|Y1:n) =
N∑

i=1

α(i)
n β(i)

n δ
(
xn − X(i)

n

)
, (7)

so β
(i)
n corresponds to an approximation of the so-called score

∇ log pθ

(
X(i)

n

∣∣∣ Y1:n

)
.

However, loosely speaking, the previous methods approximate the
filter derivative based on the following relation

∇pθ (xn|Y1:n)

=

∫
∇pθ (x0:n|Y1:n) dx0:n−1

=

∫
pθ (x0:n|Y1:n)∇ log pθ (x0:n|Y1:n) dx0:n−1.

When this quantity is approximated numerically, it relies on a par-
ticle approximation on the path space. Consequently the variance
increases over time, hence the poor performance of the algorithm.
We propose here an alternative based on a direct pointwise approx-
imation of ∇pθ (xn|Y1:n).

3.2 Algorithm

Assume that at time n − 1, we have particle approximations of
pθ (xn−1|Y1:n−1) and ∇pθ (xn−1|Y1:n−1) of the form (6)-(7).
Substituting (6) into (3), we obtain the following pointwise ap-
proximation of the filter

p̃θ (xn|Y1:n) ∝
N∑

i=1

α
(i)
n−1αθ

(
X

(i)
n−1, xn, Yn

)
qθ

(
xn|Yn, X

(i)
n−1

)
.

(8)
At time n, we construct the following importance distribution to
impute particles

qθ (xn−1, xn|Y1:n) =

(
N∑

i=1

η(i)
n δ

(
xn−1 − X

(i)
n−1

))
(9)

× qθ (xn|Yn, xn−1)

whose marginal is

qθ (xn|Y1:n) =
N∑

i=1

η(i)
n qθ

(
xn|Yn, X

(i)
n−1

)
. (10)

In practice, one should select the parameters of the importance
distribution qθ (xn−1, xn|Y1:n) such that

qθ

(
xn|Yn, X

(i)
n−1

)
∝ gθ (Yn|xn) fθ

(
xn|X(i)

n−1

)
(11)

and

η(i)
n ∝ α

(i)
n−1

∫
gθ (Yn|xn) fθ

(
xn|X(i)

n−1

)
dxn. (12)

In most cases, one cannot sample from (11) and/or compute (12)
but one can use an approximation of these quantities.

To sample from qθ (xn−1, xn|Y1:n) , we first sample X
(j)
n−1

where
Pr

(
X

(j)
n−1 = X

(i)
n−1

)
= η(i)

n

then
X(j)

n

∣∣∣ Yn, X
(j)
n−1 ∼ qθ

(
·|Yn, X

(j)
n−1

)
.

In practice, we sample the particles
{

X
(j)
n−1

}
using a stratified

sampling strategy; any other standard resampling algorithm devel-
oped in the particle filtering framework could be used.

By plugging (6), (7) and (10) in (5) we obtain the following
pointwise approximation of the filter derivative

∇̃pθ (xn|Y1:n)

=
[
N−1 ∑N

i=1 η
−1ϕ(i)
n α

ϕ(i)
n−1αθ

(
X

(i)
n−1, X

(i)
n , Yn

)]−1

×
[∑N

i=1 α
(i)
n−1∇αθ

(
X

(i)
n−1, xn, Yn

)
qθ

(
xn|Yn, X

(i)
n−1

)
+

∑N
i=1 α

(i)
n−1αθ

(
X

(i)
n−1, xn, Yn

)
∇qθ

(
xn|Yn, X

(i)
n−1

)
+

∑N
i=1 α

(i)
n−1β

(i)
n−1αθ

(
X

(i)
n−1, xn, Yn

)
qθ

(
xn|Yn, X

(i)
n−1

)]
−

[
N−1 ∑N

i=1 η
−1ϕ(i)
n α

ϕ(i)
n−1αθ

(
X

(i)
n−1, X

(i)
n , Yn

)]−2

×N−1 ∑N
i=1 α

(i)
n−1αθ

(
X

(i)
n−1, xn, Yn

)
qθ

(
xn|Yn, X

(i)
n−1

)
×

[∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1∇αθ

(
X

(i)
n−1, X

(i)
n , Yn

)
+

∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1αθ

(
X

(i)
n−1, X

(i)
n , Yn

)
∇ log qθ

(
X

(i)
n

∣∣∣ Yn, X
(i)
n−1

)
+

∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1β

(i)
n−1αθ

(
X

(i)
n−1, X

(i)
n , Yn

)]
(13)

where ϕ (i) is the discrete index such that X
(i)
n−1 = X

ϕ(i)
n−1. Now

the algorithm proceeds as follows at time n.

Sampling Step. Sample
(
X

(i)
n−1, X

(i)
n

)
∼ qθ ( ·, ·|Y1:n) and

compute using (8)-(13)-(10)

α(i)
n ∝

p̃θ

(
X

(i)
n

∣∣∣ Y1:n

)
qθ

(
X

(i)
n

∣∣∣ Y1:n

) ,

N∑
i=1

α(i)
n = 1, (14)

β(i)
n = α−1(i)

n

∇̃pθ

(
X

(i)
n

∣∣∣ Y1:n

)
qθ

(
X

(i)
n

∣∣∣ Y1:n

) . (15)

Remark. Note that in this approach there is no explicit resam-
pling step but it is actually performed when sampling from (9).

Remark. As a byproduct of the algorithm for filter derivative,
we obtain an estimate of the filter which is different from stan-
dard methods. Compared to the Auxiliary Particle Filter (APF)
[11], computing the importance weights (14) require O

(
N2

)
op-

erations instead of O (N). However, for a fixed number of parti-
cles, this algorithm will outperform the APF because we integrate
analytically a discrete latent variable.

Remark. It is possible to modify the algorithm to ensure that∑N
i=1 β

(i)
n = 0. Because of a lack of space, this is not presented

here.
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3.3 Extensions

For an important class of dynamic models, it is possible to inte-
grate analytically a subset of the state variables; hence reducing
the variance of the Monte Carlo estimates. This has been exten-
sively used to develop efficient particle filters; e.g. [1], [5].

Consider the following conditionally linear Gaussian state-space
model

X0 ∼ µ, Xn|Xn−1 = x ∼ fθ ( ·|x)
Z0 ∼ N (m, Σ), Zn = Aθ (Xn) Zn−1 + Bθ (Xn) Vn,
Yn = Cθ (Xn) Zn + Dθ (Xn) Wn,

where Vn
i.i.d.∼ N (0, I) and Wn

i.i.d.∼ N (0, I) . Conditional upon
{Xn}n≥0 , the model {Yn, Zn} is linear Gaussian. It follows that
p (x0:n|Y1:n) can be computed up to a normalizing constant as
this distribution satisfies

p (x0:n|Y1:n) ∝ µ (x0)
n∏

k=1

f (xk|xk−1) p (Yk|Y1:k−1, x0:n)

where p (Yk|Y1:k−1, x0:n) can be computed pointwise using a
Kalman filter. In this case, it is possible to develop an efficient
particle filter which corresponds to a mixture of Kalman filters.
The derivation of the algorithm for filter derivative is too long to
be presented here but consists of a mixture of Kalman filters and its
derivatives. Similar developments can be performed for partially
observed Gaussian state-space models [1].

4 Application to Parameter Estimation

4.1 Batch ML

Assuming the true parameter θ∗ generating the data Y1:n is un-
known, we can estimate it by maximizing the following likelihood
function

Lθ (Y1:n) =

n∑
k=1

log

(∫
αθ (xk−1:k, Yk) qθ (xk|Yk, xk−1)

× pθ (xk−1|Y1:k−1) dxk−1:k) (16)

with the convention Y1:0 = ∅. To obtain the maximum likelihood
estimate, we propose to use a simple gradient ascent algorithm.
The gradient of the likelihood can directly be estimated numeri-
cally by

∇Lθ (Y1:n) =
∑n

k=1

(∑N
i=1 η

−1ϕ(i)
k α

ϕ(i)
k−1αθ

(
X

(i)
k−1, X

(i)
k , Yk

))−1

×
[∑N

i=1 η
−1ϕ(i)
k α

ϕ(i)
k−1∇αθ

(
X

(i)
k−1, X

(i)
k , Yk

)
+

∑N
i=1 η

−1ϕ(i)
k α

ϕ(i)
k−1αθ

(
X

(i)
k−1, X

(i)
k , Yk

)
∇ log qθ

(
X

(i)
k

∣∣∣ Yk, X
(i)
k−1

)
+

∑N
i=1 η

−1ϕ(i)
k α

ϕ(i)
k−1β

ϕ(i)
k−1αθ

(
X

(i)
k−1, X

(i)
k , Yk

)]
.

4.2 Recursive ML

Under regularity assumptions including the stationarity of the state-
space model, one has

1

n
Lθ (Y1:n) → L (θ)

where L (θ) is equal to∫ ∫
Rq×P(Rp)

log

(∫
gθ (y|x) µ (x) dx

)
λθ,θ∗ (dy, dµ) ,

where P (Rp) is the space of probability distributions on R
p and

λθ,θ∗ (dy, dµ) is the joint invariant distribution of the couple
(Yk, pθ (xk|Y1:k−1)). It is dependent on both θ and the true pa-
rameter θ∗. Maximizing L (θ) corresponds to minimizing the fol-
lowing Kullback–Leibler information measure given by

K (θ, θ∗) � L (θ∗) − L (θ) ≥ 0.

To optimize this cost function, Recursive Maximum Likelihood
(RML) is based on a stochastic gradient algorithm

θn = θn−1 + γn∇ log

(∫
αθn−1 (xn−1:n, Yn) qθn−1 (xn|Yn, xn−1)

× pθ1:n−1 (xn−1|Y1:n−1) dxn−1:n

)
. (17)

This requires the computation of pθ1:n (xn|Y1:n) and its deriva-
tives with respect to θ using the parameter θk at time k. The step-
size sequence {γn}n≥1 is a positive non-increasing sequence such

that
∑

γn = ∞ and
∑

γ2
n < ∞; typically one selects γn =

γ0.n
−α where γ0 > 0 and 0.5 < α ≤ 1 [2].
Numerically, we approximate (17) as

θn+1 = θn + γn

(∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1αθn

(
X

(i)
n−1, X

(i)
n , Yn

))−1

×
[∑N

i=1 η
−1ϕ(i)
n α

ϕ(i)
n−1∇αθn

(
X

(i)
n−1, X

(i)
n , Yn

)
+

∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1αθn

(
X

(i)
n−1, X

(i)
n , Yn

)
∇ log qθn

(
X

(i)
n

∣∣∣ Yn, X
(i)
n−1

)
+

∑N
i=1 η

−1ϕ(i)
n α

ϕ(i)
n−1β

ϕ(i)
n−1αθn

(
X

(i)
n−1, X

(i)
n , Yn

)]
4.3 Linear Gaussian State Space Model

Let us consider the following scalar linear Gaussian state space
model

Xn+1 = φXn + σV Vn+1, X0 ∼ N (0, 1)

Yn = Xn + σW Wn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) . We are interested
in estimating the parameter θ � (φ, σV , σW ). In this case the
optimal filter is given by the Kalman filter and it is possible to get
exact expressions for its derivative. This allows to compare our
numerical methods with the ground truth. Figure 1 compares the
particle approximations with the exact values of the derivative of
the log-likelihood with respect to the three parameters. The results
are almost indistinguishable.

4.4 Stochastic Volatility Model

We consider the following model [11]

Xn+1 = φXn + σVn+1, X0 ∼ N
(

0,
σ2

1 − φ2

)
Yn = β exp (Xn/2) Wn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) are two mutually
independent sequences, independent of the initial state X0. We
are interested in estimating the parameter θ � (σ, φ, β) where
Θ = (0, Ξ)× (−1, 1)× (0, Ξ) with Ξ = 100. We apply our batch
ML method to the pound/dollar daily exchange rates; see [6]. This
time series consists of 945 data points. The parameter estimates
for M = 1000 iterations using N = 1000 particles are shown in
Figure 2.

Our results are consistent with results obtained in [6]. We ob-
tain θ̂ML = (0.161, 0.976, 0.628) whereas the estimate in [6] is
θ̂ML = (0.173, 0.973, 0.634).
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Figure 1: Analytical and numerical results for the scores using
N = 1000.
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Figure 2: Sequence of parameter estimates for RML θn =
(σn, φn, βn) for N = 1000. From top to bottom: φn, βn and
σn.

4.5 Conditionally Linear Gaussian model

The stochastic volatility model of the previous section can be lin-
earized under the transformation Ψn = log Y 2

n = Xn + log β2 +
εn, where εn = log W 2

n . The non-Gaussian distribution of {εn}
can be well approximated by a mixture of seven Gaussians [8].
We implemented the RML algorithm on the resultant conditionally
linear Gaussian model using N = 1000 particles using the Rao-
Blackwellised algorithm. It converged to a value θ̂ in the neighbor-
hood of the true parameter θ∗ = (0.2, 0.98, 0.7). Figure 3 shows
an example of the estimates obtained.

5 Discussion

In this paper, we have proposed original particle methods to esti-
mate the derivative of the optimal filter in general state-space mod-
els. These methods can be used to perform batch/on-line parameter
estimation but also for control applications. Their computational
cost is quadratic in the number of particles. However by taking ad-
vantage of fast computation methods [9], we expect that this prob-
lem could be significantly mitigated. Finally, from a theoretical
viewpoint we are currently studying the stability of these particle
approximations.
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x 10
4
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Figure 3: Sequence of parameter estimates for RML θn =
(σn, φn, βn) for N = 1000. True parameters were θ∗ =
(0.2, 0.98, 0.7). From top to bottom: φn, βn and σn.
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