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ABSTRACT

Multiple description coding (MDC) recently appeared as a joint
source-channel coding technique specifically designed for real-
time multimedia applications over best effort switched packet net-
works such as Internet, in order to cope with packet losses due to
transmission errors or network congestion. In this paper we com-
pare several redundant wavelet decompositions in the framework
of multiple description of scalable video coding. A special atten-
tion is paid to the optimal design of the central decoder. Simula-
tion results are provided for motion-compensated filter banks so as
to evaluate the efficiency of the central and side decoding strate-
gies. Compared with other techniques, a key factor of the proposed
analysed schemes is their reduced redundancy factor.

1. INTRODUCTION

In image and video coding, a number of wavelet bases have demon-
strated good compression capabilities. In particular, in scalable
video coding, there has recently been a growing interest in motion-
compensated structures using the orthonormal Haar decomposi-
tion or biorthogonal 5-3 filter banks for the temporal decompo-
sition [1], [2]. Scalable representations are useful for bitstream
adaptation to bandwidth variations or receiver characteristics, but
in case of video transmission over best effort switched packet net-
works such as Internet, additional difficulties in reconstruction are
raised by packet losses. A joined source-channel design can in-
crease the error resilience of the transmitted bitstreams, and mul-
tiple description coding [3] appeared as such a technique, intro-
ducing redundancy at the source in order to cope with channel
losses. Basically, correlated descriptions of the input are created
and transmitted over independent on-off channels. In case of chan-
nel failure due to network congestion, server failure etc, side de-
coders should be able to reconstruct with an acceptable quality the
source, while the reception of all the descriptions by a central de-
coder leads to a high-quality reconstruction.

While several previous works addressed the multiple descrip-
tion of video by creating multiple loops in the temporal predic-
tion loop of a hybrid codec [4], [5], we investigate in this work
temporal multiple descriptions scheme based on a redundant t +
2D wavelet decomposition. Our schemes combine thus the spa-
tial/temporal/SNR scalability of a t + 2D wavelet-based codec

with the error robustness conferred by coding correlated descrip-
tions. Unlike other studies, in which the wavelet filter bank was
applied indepedently in the spatial domain for each image [6], [7],
in our approach the oversampled filter bank concerns the tempo-
ral decomposition. In a previous work [8], we have introduced
temporal redundancy in a 3-band filter bank. Here, we first intro-
duce an oversampled dyadic temporal filter bank and propose sev-
eral ways of constructing correlated descriptions. The properties
of such filter banks acting as channel codes over erasure channels
have recently been investigated [9], [10], [11]. However, a special
feature that we request from our schemes is a reduced redundancy
factor, achieved by a further subsampling of the detail frames. In
this case, the perfect reconstruction is not any more guaranteed for
these schemes. We provide consequently a framework for study-
ing the invertibility at the central decoder and reduce the effect of
the quantization noise.

In the next section, we present the considered filter bank frame-
work and introduce the proposed MDC schemes. In Section 3 the
signal reconstruction is discussed. In Section 4, we focus on the
video coding application and provide simulation results. The last
section concludes this paper.

2. REDUNDANT FILTER BANK REPRESENTATIONS

Starting from a dyadic filter bank, we first investigate several re-
dundant filter bank structures and describe possible configurations
for creating multiple descriptions.

Let us consider a temporal input signal, (xn)n∈Z and denote
by (hn)n∈Z (resp. (gn)n∈Z) the low-pass (resp. high-pass) filter
of a 2-band analysis filter bank with perfect reconstruction. The
approximation coefficients are then given by

a
I
n =

∑
k

h2n−k xk (1)

and the detail coefficients are

d
I
n =

∑
k

g2n−k xk. (2)

By decimating at odd instants rather than even ones, the approxi-
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mation/detail coefficient sequences become

a
II
n =

∑
k

h2n−1−k xk (3)

d
II
n =

∑
k

g2n−1−k xk. (4)

By considering all the above four set of coefficients, we obviously
generate a redundant decomposition, the number of coefficients
being multiplied by 2. It is however possible to build more “eco-
nomical” representations while keeping the desired perfect recon-
struction property. To do so, we will further decimate these se-
quences by a factor 2 and we will therefore find useful to intro-
duce:

â
I
n = a

I
2n, (5)

ǎ
I
n = a

I
2n−1, (6)

similar notations being used for the other involved sequences. The
vector cn which contains all the possible subsampled sequences is
cn =

(
âI

n ǎI
n âII

n ǎII
n d̂ I

n ď I
n d̂ II

n ď II
n

)
T

. Let us now introduce the
polyphase components of the analysis filters:

∀i ∈ {0, 1, 2, 3}, hi(n) = h4n−i, gi(n) = g4n−i (7)

and the corresponding z-transforms Hi(z) and Gi(z). Similarly,
we define the four polyphase components of the input signal by:

∀i ∈ {0, 1, 2, 3}, x
(i)
n = x4n+i. (8)

The corresponding polyphase component vector is

xn =
(
x

(0)
n x

(1)
n x

(2)
n x

(3)
n

)
T

. (9)

It is then easily shown that Eqs. (1)-(4) are equivalent to the fol-
lowing polyphase representation:

C(z) = M(z) X(z) (10)

where C(z) and X(z) are the z-transforms of the coefficient vec-
tor sequence and of the input signal and M(z) is the global polyphase
transfer matrix which is given by

M(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z−1 H1(z)z−1

H1(z) H2(z) H3(z) H0(z)z−1

H3(z) H0(z)z−1 H1(z)z−1 H2(z)z−1

G0(z) G1(z) G2(z) G3(z)
G2(z) G3(z) G0(z)z−1 G1(z)z−1

G1(z) G2(z) G3(z) G0(z)z−1

G3(z) G0(z)z−1 G1(z)z−1 G2(z)z−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to generate schemes with lower redundancy, we propose to
discard 2 of the components of cn. The remaining 6-dimensional
vector cn corresponds to a representation with a redundancy fac-
tor equal to 3/2. The resulting oversampled filter bank is such
that C(z) = M(z) X(z), where C(z) is the z-transform of
(cn)n∈Z and M(z) is the polyphase transfer function of the con-
sidered scheme. Several possible decompositions may however be
obtained depending on the choice of the submatrix M(z). More
precisely, we have investigated the following four solutions, for
which we specify the way of building two appropriate descriptions.

• R-Scheme. This scheme consists in splitting the detail co-
efficients of the classical critically subsampled analysis into
two groups: even-index coefficients and odd-index coef-
ficients, each group belonging to one of the descriptions.
The approximation coefficients are simply duplicated. This
corresponds to

cn = (âI
n ǎ

I
n d̂

I
n︸ ︷︷ ︸

1st description

â
I
n ǎ

I
n ď

I
n︸ ︷︷ ︸

2nd description

)T
. (11)

In this case, M(z) is formed with the lines 1, 2, 5, 1, 2, 6 of
M(z) (lines 1, 2 are duplicated).

• D1-Scheme We distribute the detail coefficients according
to the same scheme as above, but in the second description,
instead of repeating the approximation coefficients given by
Eq. (1), we use those given by Eq. (3) This corresponds to

cn = (âI
n ǎ

I
n d̂

I
n︸ ︷︷ ︸

1st description

â
II
n ǎ

II
n ď

I
n︸ ︷︷ ︸

2nd description

)T

. (12)

and M(z) is formed with the lines 1, 2, 5, 3, 4, 6 of M(z).

• D2-Scheme We add more “diversity” in the choice of the
detail coefficients by taking

cn = (âI
n ǎ

I
n d̂

I
n︸ ︷︷ ︸

1st description

â
II
n ǎ

II
n d̂

II
n︸ ︷︷ ︸

2nd description

)T
. (13)

We deduce that M(z) is formed with the lines 1, 2, 5, 3, 4, 7
of M(z).

• D3-Scheme By selecting the odd-subsampled detail coeffi-
cients in Eq. (3) rather than the even-subsampled one, we
get

cn = (âI
n ǎ

I
n d̂

I
n︸ ︷︷ ︸

1st description

â
II
n ǎ

II
n ď

II
n︸ ︷︷ ︸

2nd description

)T

. (14)

and M(z) is formed with the lines 1, 2, 5, 3, 4, 8 of M(z).

In the absence of quantization, the first two schemes are obviously
invertible since they include all the coefficients resulting from the
classical critically subsampled analysis. For the latter two schemes
the invertibility is not guaranteed a priori. By considerations which
are detailed in [12], we have shown that these schemes can be
inverted by FIR synthesis filters for usual choices of the analysis
filters.

3. SYSTEM RECONSTRUCTION

3.1. Solution of the System Inversion

In this section, we investigate how to reconstruct the signal from
the proposed redundant representations. In terms of MDC, this
amounts to design the synthesis scheme used at the central de-
coder. With the notations used in the previous section, we can for-
mulate the problem as follows: we want to find an N ×K transfer
function W(z) such that

W(z)M(z) = IN×N (15)

where W(z) = [Wi,j(z)]1≤i≤N,1≤j≤K and M(z) =
[Mi,j(z)]1≤i≤K,1≤j≤N . We remind that K = 6 is the number of
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coefficient sequences and N = 4 < K is the number of polyphase
components of the input signal. The maximum length of the scalar
filters with transfer function Wi,j(z) (resp. Mi,j(z)) is assumed
to be equal to P ∈ N

∗ (resp. Q ∈ N
∗). For (15) to be satisfied, we

thus have to solve N2 scalar polynomial equations.
Let W(z) and M(z) in (15) be explicitely written as Laurent

polynomial matrices of the form:

W(z) =
0∑

p=−P+1

Wp z
−p (16)

M(z) =

Q−1∑
q=0

Mq z
−q (17)

where, for all p (resp. q) Wp (resp. Mq) is an N × K (resp.
K × N ) matrix. The global N × N transfer function in the left-
hand side of (15) reads

G(z) = W(z)M(z) =

Q−1∑
s=−P+1

Gs z
−s (18)

where, for all s,

Gs =

min(0,s)∑
p=max(−P+1,s−Q+1)

Wp Ms−p. (19)

This shows that the solution W(z) of (15) is obtained by solving
a system of N2(Q + P − 1) linear equations. On the other hand,
the number of unknown variables in W(z) is NKP .

Our goal is to find an inverse W(z) which satisfies (15) and is
optimal in a sense that will be made more precise in Section 3.2.
Using (19), Relation (15) may be rewritten in the following matrix
form:

MW = U (20)

where W and U are real matrices of sizes KP × N and N(Q +
P − 1) × N respectively, which are given by

W
T = [W−P+1 . . . W0] (21)

U
T = [0N×N . . . 0N×N︸ ︷︷ ︸

P−1 times

IN×N 0N×N . . . 0N×N︸ ︷︷ ︸
Q−1 times

] (22)

whereas M
T is the KP × N(Q + P − 1) generalized Sylvester

matrix:

M
T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0 M1 . . . MQ−1 0K×N . . . . . . 0K×N
0K×N M0 M1 . . . MQ−1 0K×N . . . 0K×N

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
. 0K×N

0K×N . . . . . . 0K×N M0 M1 . . . MQ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eq. (20) has a solution when rank([M U ]) =
rank(M). If M(z) can be inverted by a Laurent polynomial ma-
trix, we can claim that there exists a minimal value of P for which
this equality is reached.

3.2. Optimal Reconstruction

In terms of coding, it is of main importance to study the influence
of the choice of W on the effect of the quantization noise. Mod-
elling the quantization as the addition of a noise on all sequences
at the output of M(z), we aim at reducing as much as possible the
influence of this noise on the reconstruction (x′

n)n∈Z of (xn)n∈Z.
We assume in the sequel that the noise vector sequence (bn)n∈Z

is zero-mean, independent and identically distributed with non sin-
gular covariance matrix Λ. We obviously have

x
′
n = xn + vn (23)

where (vn)n∈Z is the multivariate moving average process defined
by vn =

∑
p Wp · bn−p. The autocovariance matrix for vn is

E{vnvn
T} =

∑
p

WpΛWp
T

. (24)

The global noise power on the components of x
′
n is E{‖vn‖

2
2}.

We deduce that the inverse system minimizing the effect of the
quantization error is

W = (Λ′)−1/2 (M(Λ′)−1/2)�
U (25)

where Λ
′ is the block-diagonal matrix of size (PK)×(PK) given

by Λ
′ = Diag(Λ, . . . ,Λ) and A

� designates the pseudo-inverse
of a matrix A. A particular case of interest is when the coefficients
sequences are quantized with the same precision, which can be
modelled by Λ = σ2

IK×K . Then, the optimal choice reduces to

W = M
�

U . (26)

4. SIMULATIONS RESULTS

When comparing the four proposed MDC schemes in terms of
global noise power on the reconstructed sequences, the R and D2
schemes appeared to provide lower performance than D1 and D3.
Therefore, we only present comparisons concerning the two latter
schemes.

We have implemented J = 3 levels of motion-compensated
temporal lifting Haar decomposition [13], the last level consisting
of one of the two analysed schemes D1 or D3. Note that in this way
the overall redundancy of the structure is decreased to 1 + 2−J .
The detail frames obtained at resolution levels j < J have been
alternately distributed between the two descriptions in an identical
manner for the two schemes.

Concerning the side decoders, a pseudo-inverse approach was
also applied to deduce the optimal reconstruction for each scheme.

The proposed schemes have been tested on several CIF se-
quences at 30fps. On the first two temporal decomposition levels
a full pel motion compensation is involved in the lifting transform,
while at the last level no motion estimation is performed. Tem-
poral subband frames have been decomposed with 9/7 biorthogo-
nal wavelets. The spatio-temporal wavelet coefficients and motion
vectors have been coded as for the non robust codec, by using the
MC-EZBC algorithm [14].

In Tab. 1 we compare the rate-distortion performance of the
central and side decoders for the D1 and D3 schemes. Note that the
central decoder of the D1 scheme outperforms the central decoder
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of D3, as can be predicted from the theoretical framework. One of
the side decoders (denoted by “A” in Tab. 1) is identical for the two
schemes. However, due to an asymetrical construction of the two
descriptions in the D1 scheme, one of its side decoders (denoted
by “B” in Tab. 1) exhibits a poorer performance.

“FOREMAN” D1 scheme
bitrate 250 500 750 1000 1500 3000
central 29.48 32.19 33.85 34.98 36.85 40.53
side A 26.05 27.20 27.78 28.13 28.66 29.51
side B 24.32 24.84 25.06 25.16 25.29 25.43

“FOREMAN” D3 scheme
bitrate 250 500 750 1000 1500 3000
central 29.27 32.01 33.68 34.79 36.68 40.39
side A 26.05 27.20 27.78 28.13 28.66 29.51
side B 25.26 26.16 26.62 26.88 27.28 27.96

“MOBILE” D1 scheme
bitrate 250 500 750 1000 1500 3000
central 19.89 22.18 23.54 24.88 26.55 30.61
side A 18.96 20.15 20.78 21.24 21.91 23.07
side B 18.36 19.24 19.70 19.93 20.37 20.90

“MOBILE” D3 scheme
bitrate 250 500 750 1000 1500 3000
central 19.70 21.95 23.33 24.61 26.33 30.43
side A 18.96 20.15 20.78 21.24 21.91 23.07
side B 18.81 19.83 20.35 20.72 21.28 22.23

Table 1. Rate-distortion comparison of the two schemes for
the central and side decoders: YSNR (dB) at different bi-
trates (Kbs), for ”FOREMAN” and “MOBILE” sequences
(CIF at 30fps) on three levels of wavelet decomposition.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have compared several temporal MDC schemes
based on redundant wavelet decompositions with a reduced redun-
dancy factor. We have proposed a general framework for analysing
the perfect reconstruction of the schemes and optimal design of the
central decoder. The studied schemes have been applied to robust
scalable video coding and their merits have been compared. Fur-
ther work is under investigation to improve the behaviour of the
side decoders, by better taking into account the motion compensa-
tions involved in the temporal decompositions.
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[10] J. Kovačević, P.L. Dragotti, and V. Goyal, “Filter bank frame
expansions with erasures,” IEEE Trans. on Inf. Theory, vol.
48, no. 6, June 2002.

[11] S. Marinkovic and C. Guillemot, “Impulse noise correction
in an image transmission system by means of an oversampled
filter bank code,” in Proc. of EUSIPCO, Sept. 2004, pp. 241–
244.

[12] T. Petrisor, C. Tillier, B. Pesquet-Popescu, and J.-C. Pesquet,
“Temporal multiple description schemes for scalable video
using wavelet frames,” in preparation.

[13] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional
lifting schemes for motion compensated video compression,”
in IEEE Int. Conf. on Acoustics, Speech and Signal Proc.,
Salt Lake City, UT, May 2001.

[14] “3D MC-EZBC software package,” available on the MPEG
CVS repository.

V - 916

➡ ➠


