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ABSTRACT

Multiple description (MD) video coding can be used to reduce

the detrimental effects caused by transmission over lossy packet

networks. Each approach to MD coding consists of a tradeoff

between compression efficiency and error resilience. How

effectively each method achieves this tradeoff depends on the

network conditions as well as on the characteristics of the video

itself. This paper proposes an adaptive MD coding approach

which adjusts to these conditions through the use of adaptive

MD mode selection. The encoder in this system is able to 

accurately estimate the expected end-to-end distortion,

accounting for both coding and packet-loss-induced distortions,

as well as for the bursty nature of channel losses and the

effective use of multiple transmission paths. With this model of 

end-to-end expected distortion, the encoder selects between MD

coding modes in a rate-distortion optimized manner to most 

effectively trade-off compression efficiency for error resilience.

We show how this approach adapts to the local characteristics of

the video as well as to current network conditions and

demonstrate the resulting gains in performance.

1. INTRODUCTION

Streaming video applications often require error resilient coding

methods able to adapt to current network conditions and to

withstand transmission losses. Best-effort networks like the

Internet are characterized by variable bandwidths, packet losses,

and delays. Applications must be able to withstand these harsh

conditions or they can suffer severe performance degradations.

Multiple description (MD) video coding is one approach that

can be used to reduce the detrimental effects caused by packet

loss on best-effort networks. In a multiple description system, a

video sequence is coded into two or more complementary

streams in such a way that each stream is independently

decodable. The quality of the received video improves with each 

received description, but the loss of any one of these descriptions

does not cause complete failure. If a portion of one of the 

streams is lost or delivered late, the video playback can continue

with only a slight reduction in overall quality. For an in-depth

review of MD coding for video communications see [1].

Previous MD video coding approaches applied a single MD

technique to an entire sequence. However, the optimal MD

coding method depends on many factors including the amount of

motion in the scene, the amount of spatial detail, desired bitrates,

error recovery capability of each technique, current network

conditions, etc. This paper examines the adaptive use of multiple

MD coding modes within a single sequence. Specifically, this

paper proposes an adaptive MD coder which selects among MD 

coding modes in an end-to-end rate-distortion (R-D) optimized

manner as a function of local video characteristics and network

conditions. The addition of end-to-end R-D optimization is an

extension of the adaptive system proposed in [2].

This paper continues in Sections 2 and 3 with an overview of

how end-to-end optimized mode selection can be achieved in

MD systems. The details of the proposed system are provided in

Section 4, and experimental results are given in Section 5.

2. OPTIMAL MD MODE SELECTION

Each approach to MD coding trades off some amount of

compression efficiency for an increase in error resilience. How

efficiently each method achieves this tradeoff depends on the

quality of video desired, the current network conditions, and the

characteristics of the video itself. Most prior work in MD coding 

apply a single MD method to the entire sequence; this approach

is taken so as to evaluate the performance of each MD method.

However, it would be more efficient to adaptively select the best

MD method based on the situation at hand. Since the encoder in

this system has access to the original source, it is possible to 

calculate the rate-distortion statistics for each coding mode and

select between them in an R-D optimized manner.

Lagrangian optimization techniques can be used to minimize 

distortion subject to a bitrate constraint [3]. However, this

approach assumes the encoder has full knowledge of the end-to-

end distortion experienced by the decoder. In a lossy channel,

the end-to-end distortion consists of (1) known distortion from 

quantization and (2) unknown distortion from random packet

loss which can only be determined in expectation due to the

random nature of losses. Modifying the Lagrangian cost function 

to account for the total end-to-end distortion gives the following.

quant loss

i iJ D E D iR (1)

Here iR  is the total number of bits necessary to code region ,

 is the distortion due to quantization, and is a random 

variable representing the distortion due to packet losses. Thus, 

the expected distortion experienced by the decoder can be

minimized by coding each region with all available modes and 

choosing the mode which minimizes the Lagrangian cost.

i
quant

iD loss

iD

Calculating the expected end-to-end distortion is not a

straightforward task due to spatial and temporal error

propagation. However, in [4] the authors show how to estimate

expected distortion in a pixel-accurate recursive manner for SD

and Bernoulli losses. In the next section we discuss this approach

and the extensions necessary to apply it to the current problem of

MD coding over multiple paths with Gilbert (bursty) losses. 
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3. MODELING EXPECTED DISTORTION IN

MULTIPLE DESCRIPTION STREAMS

As discussed in Section 2, random packet losses force the 

encoder to model the network channel and estimate expected

end-to-end distortion. With an accurate model of expected

distortion the encoder can make optimized decisions to improve

the quality of the decoded video stream. A number of approaches

have been suggested in the past to model expected distortion. In

[4] the authors suggest a recursive optimal per-pixel estimate 

(ROPE) for optimal intra/inter mode selection. In [5] the ROPE

model is extended to a two-stream multiple description system

by recognizing the four possible loss scenarios: both descriptions

are received, either description is lost, or both descriptions are 

lost. The conditional expectations of each of these four possible 

results are multiplied by the probability of each occurring to

calculate the total expectation.

Previous models have used a Bernoulli independent packet

loss model, but the idea can be modified for a channel with

bursty packet losses as well. Recent work has identified the

importance of burst length in characterizing error resilience 

schemes. In fact burst length has been shown to be an important

feature for comparing the relative merits of different error

resilient coding schemes [6][7][8].

For this system we have extended the MD ROPE approach to 

account for bursty packet loss. Here we use a 2-state Gilbert loss

model, but the same approach could be used for any multi-state 

model including those with fixed burst lengths. In the Gilbert

loss model, packet losses become more likely if the previous

packet has been lost. The total expectation can be calculated with

multi-state packet loss models by computing the expectation

conditioned on being in each state and multiplying by the

probability of transitioning from one state to another. We have

further modified this approach in order to apply it to H.264 with

quarter pixel motion vector accuracy and more sophisticated

error concealment methods by using the techniques proposed in

[9] for estimation of cross-correlation terms.

4. SYSTEM IMPLEMENTATION

The system described in this paper has been implemented based

on the H.264 video coding standard using quarter pixel motion

vector accuracy and all available intra- and inter-prediction

modes [10]. We have used reference software version 8.6 for 

these experiments with modifications to support adaptive mode 

selection. Constant bitrate encoding is used to keep the number 

of bits per frame approximately constant. To accomplish this, the

quantizer for each macroblock is adjusted using the reference

software rate-control implementation. The in-loop deblocking

filter used in H.264 has been turned off to simplify the problem.

The adaptive mode selection is performed on a macroblock

basis using the Lagrangian techniques discussed in Section 2

with the expected distortion model from Section 3. Note that this

optimization is performed simultaneously for both traditional

coding decisions (e.g. inter versus intra coding) as well as for

selecting one of the possible MD modes.

The current system uses a combination of four possible MD

modes: single description coding (SD), temporal splitting (TS),

spatial splitting (SS), and repetition coding (RC). SD coding

represents the typical coding approach where frames are

predicted from the previous frame in an attempt to remove as 

much redundancy as possible. In temporal splitting mode, even

frames are predicted from even frames and odd frames from odd

frames. Similarly, in spatial splitting, even lines are predicted

from even lines and odd from odd (it was necessary to modify

the H.264 codec to support macroblock-level interlaced coding

for this approach). Finally, repetition coding is the same as the

SD approach except the data is transmitted once in each

description.

Note that when coded in a non-adaptive fashion, each 

method (SD, TS, SS, RC) is still performed in an R-D optimized

manner as mentioned above. All of the remaining coding

decisions, including inter versus intra coding, are made to

minimize the end-to-end distortion. For instance, the RC mode is

not simply a straightforward replica of the SD mode. The system

recognizes the reliability of the RC mode and elects to use far

less intra-coding allowing more intelligent allocation of the

available bits.

The packetization of data differs slightly for each mode (see 

Fig 1). In both the SD or TS approaches, all data for a frame is 

placed into a single packet. The even frames are then sent along

one stream and the odd frames along the other. While in the SS 

and RC approaches, data from a single frame is coded into

packets placed into both streams. Even lines are sent in one

stream and odd lines sent in the other with SS, while all data is

repeated for RC. Therefore, for SD and TS each frame is coded 

into one large packet which is sent in alternating streams, while

for SS and RC each frame is coded into two smaller packets and

one small packet is sent in each stream. Since the adaptive

approach (ADAPT) is some combination of each of these four 

methods, there is typically one slightly larger packet and one

smaller packet and these alternate streams between frames.

If a frame is lost in either the TS or SD method, no data 

exists in the opposite stream at the same time instant, so missing

data is directly copied from the previous frame. In the SS 

method, if only one description is lost the decoder reconstructs

missing lines using linear interpolation, and if both are lost it

copies the previous frame. Similarly for RC, if only one 

description is lost the decoder can use the data in the opposite 

stream, while if both are lost it copies the previous frame.

Frm 1a

Frm 2a

Frm 1a

Frm 2aFrm 1b

Frm 2b

1b Frm 2a

Frm 1a 2b

a.)SD/TS b.)SS/RC

c.) ADAPT

Stream 0:

Stream 1:

Stream 0:

Stream 1:

Fig 1: Packetization of data in MD modes.  a.) SD/TS: Data sent

along one path alternating between frames. b.) SS/RC: Data 

spread across both streams. c.) ADAPT: Combination of the two 

resulting in one slightly larger packet and one slightly smaller.

5. EXPERIMENTAL RESULTS

These results have been obtained using our modified H.264 JM

8.6 codec (described above) and the Foreman video sequence,

which contains 400 frames at 30 frames per second at QCIF 

resolution.

To measure the actual distortion experienced at the decoder,

we have simulated a Gilbert packet loss model with packet loss

rates and expected burst lengths as specified in each section

V - 906

➡ ➡



below. For each of the experiments, we have run the simulation

with 300 different packet loss traces and averaged the resulting

squared-error distortion. The same packet loss traces were used

throughout a single experiment to allow for meaningful 

comparisons across the different MD coding methods.

Each path in the system is assumed to carry 30 packets per 

second where the packet losses on each path are modeled as a

Gilbert process. For wired networks, the probability of packet 

loss is generally independent of packet size so the variation in

sizes should not generally affect the results or the fairness of this

comparison. When the two paths are balanced or symmetric the

optimization automatically sends half the total bitrate across

each path. For unbalanced paths the adaptive system results in a 

slight redistribution of bandwidth as discussed below.

We first evaluate the system’s ability to adapt to the

characteristics of the video source. The channel in this

experiment was simulated with two balanced paths each having

5% average packet loss rate and expected burst length of 3 

packets. The video was coded at approximately 0.4 bits per pixel

(bpp). Fig 2 demonstrates the resulting distortion in each frame

averaged over the 300 packet loss traces for the adaptive MD 

method and each of its non-adaptive MD counterparts.
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Fig 2: Average distortion in each frame for ADAPT versus each 

non-adaptive approach. Coded at 0.4 bpp with balanced paths 

and 5% average packet loss rate and expected burst length of 3. 

The Foreman sequence contains a significant amount of

motion from frames 250 to 350 and is fairly stationary from 

frame 350 to 399. Notice how the SS/RC methods work better

during periods of significant motion while the SD/TS methods 

work better as the video becomes stationary. The adaptive

method intelligently switches between the two, maintaining at

least the best performance of any non-adaptive approach. Since

the adaptive approach adapts on a macroblock level, it is often

able to do even better than the best non-adaptive case by

selecting different MD modes within a frame as well.

Also shown on Fig 2 are the results from a typical video

coding approach which we will refer to as standard video coding

(STD). Here R-D optimization is only performed with respect to

quantization distortion, not the end-to-end R-D optimization

used in the other approaches. Instead of making inter/intra

coding decisions in an end-to-end R-D optimized manner as

performed by SD, it periodically intra updates one line of

macroblocks in every other frame to combat error propagation

(this update rate was chosen as the optimal intra refresh rate [11]

is often approximately , where  is the packet loss rate). 1/ p p

By making intelligent decisions through end-to-end R-D

optimization, the SD method is able to outperform the STD 

method by as much as 4 or 5 dB. The adaptive MD approach is

further able to outperform SD coding by up to 2 dB depending

on the amount of motion present at the time. 

Fig 3 shows the percentage of macroblocks using a particular

MD mode in each frame. From the distribution of MD modes,

one can roughly segment the sequence into three distinct regions:

almost exclusively SD/TS in the last 50 frames, mostly SS/RC in 

the middle, and a combination of the two at the beginning. This

matches up with the characteristics of the video which contains

some amount of motion at the beginning, a fast camera scan in

the middle, and is nearly stationary at the end.

0%

50%

100%

0 50 100 150 200 250 300 350 400

0%

50%

100%

0 50 100 150 200 250 300 350 400

0%

50%

100%

4000 50 100 150 200 250 300 350

0%

50%

100%

0 50 100 150 200 250 300 350 400

Frame

R
C

S
S

T
S

S
D

0%

50%

100%

0 50 100 150 200 250 300 350 400

0%

50%

100%

0 50 100 150 200 250 300 350 400

0%

50%

100%

0 50 100 150 200 250 300 350 400

0%

50%

100%

0 50 100 150 200 250 300 350 400

Frame

R
C

S
S

T
S

S
D

Fig 3: Distribution of MD modes used in adaptive method for

each frame. 5% average packet loss rate, expected burst length 3. 

In our second experiment we examine how the system adapts 

to the conditions of the network. Here we have compared the 

previous experiment with one in which the average packet loss

rate is increased to 10%. Table 1 shows the distribution of MD

mode in each of these cases. As the loss rate increases to 10%

the system responds by switching from lower redundancy 

methods (SD/TS) to higher redundancy methods (SS/RC) in an 

attempt to provide more protection against losses.

Fig 4 shows the end-to-end R-D performance curves of each 

method. To generate each point on these curves, the resulting

distortion was averaged across all 300 packet loss simulations, as

well as across all 400 frames of the sequence. The same

calculation was then conducted at various bitrates to generate

each R-D curve. By switching between MD methods, ADAPT is 

able to outperform optimized SD coding by 0.2-1.2 dB and STD 

coding by as much as 4.9 dB. ADAPT is able to outperform TS,

which performs second best overall, by as much as 0.6 dB.

Table 1: Distribution of MD modes in the adaptive approach

comparing 5% and 10% average packet loss rates.

MD Mode Low Loss High Loss

SD 51.9% 43.9%

TS 19.4% 17.5%

SS 15.4% 16.8%

RC 13.4% 21.9%
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Fig 4: End-to-end R-D performance of ADAPT and non-

adaptive methods. 5% packet loss rate, expected burst length 3.

Table 2: Percentage of macroblocks using each MD mode in the 

adaptive approach when sent along unbalanced paths. 

MD Mode
Even Frames

More Reliable Path

Odd Frames

Less Reliable Path

SD 55.6% 48.8%

TS 25.2% 14.5%

SS 10.7% 18.6%

RC 8.4% 18.1%

Table 3: Percentage of total bandwidth in each stream for 

balanced and unbalanced paths. 

Balanced Paths Unbalanced Paths

Stream 1 49.9% 56.2%

Stream 2 50.1% 43.8%

One interesting side result here is how well RC performs at

higher bitrates. Keep in mind that this is an R-D optimized RC

approach, not simply the half-bitrate SD method repeated twice.

The amount of intra coding used in RC is significantly reduced

relative to SD coding as the encoder recognizes the increased

resilience of the RC method and chooses to allocate more bits for

improving quality.

In our final experiment, we analyze the performance of the 

adaptive method when used with unbalanced paths where one 

path is more reliable than the other. The channel consisted of one

path with 3% average packet loss rate and another with 7%, both 

with an expected burst length of 3 packets. The video in this 

experiment was coded at approximately 0.4 bpp. Table 2 shows 

the distribution of MD modes in even frames of the sequence

versus odd frames. The even frames are those where the larger

packet (see Fig 1) is sent along the more reliable path and the

smaller packet is sent along the less reliable path. The opposite is

true for the odd frames.

As shown in Table 2, the system uses more SS and RC in the

less reliable odd frames. These more redundant methods allow

the system to provide additional protection for those frames

which are more likely to be lost. By doing so, the adaptive

system is effectively moving data from the less reliable path into

the more reliable path. Table 3 shows the bit rate sent along each

path in the balanced versus unbalanced case. In this situation, the 

system is shifting about 6% of its total rate into the more reliable

stream to compensate for conditions on the network. Since the

non-adaptive methods are forced to send approximately half

their total rate along each path, it is difficult to make a fair

comparison across methods in this unbalanced situation. We are 

considering ways to compensate for this. However, it is quite

interesting that the end-to-end R-D optimization is able to adjust

to this situation in such a manner.

6. CONCLUSIONS

This paper proposed an end-to-end R-D optimized adaptive

mode selection system for multiple description coding. The

system makes use of multiple MD coding modes within a given

sequence, making optimal decisions using a model of expected

end-to-end distortion. We have demonstrated how the system is 

able to adapt to local characteristics of the video and to network

conditions on multiple paths and have shown the potential for 

this adaptive approach, which selects among a small number of

simple complementary MD modes, to significantly improve

video quality. The effectiveness of this adaptive scheme depends

on the video source and knowledge of the network. Even so, the

results are quite promising, and it is apparent that the adaptive

MD mode selection can provide significant benefits.
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