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ABSTRACT

We investigate the theory of the finite discrete Heisenberg-Weyl
group in relation to the development of adaptive radar. We con-
tend that this group can form the basis for the representation of
the radar environment in terms of operators on the space of wave-
forms. We also demonstrate, following recent developments in the
theory of error correcting codes, that the finite discrete Heisenberg-
Weyl group provides a unified basis for the construction of useful
waveforms/sequences for radar, communications and the theory of
error correcting codes.

1. INTRODUCTION

Modern radars have the capacity to adaptively switch waveforms
on a pulse to pulse basis and to retain coherence over many pulses,
but these capacities are only just beginning to be exploited. If we
are to fully exploit this waveform agility in both modern and fu-
ture radars two important problems need to be addressed. The first
is the representation of the environment as it pertains to the trans-
mission of radar waveforms. This includes both targets and back-
ground clutter. The second important problem is to ensure that one
has a sufficiently flexible set of waveforms to enable the choice a
waveform which are optimized for a given situation.

It is the purpose of the present paper to show that both of these
problems can be approached to a large extent within the same
mathematical framework. That is, through the theory of the dis-
crete Heisenberg-Weyl group [1]. It is well known that the con-
tinuous Heisenberg-Weyl group has application to the theory of
radar, for example see [2], but the discrete version of this group
has received little attention in radar. Since, in practical terms, the
resolution of a radar is finite, by choosing a fine enough discretiza-
tion in range and Doppler we can treat the radar perfectly well with
the one dimensional discrete Heisenberg-Weyl group. This has a
number of advantages, one of which is that the radar environment
can be represented by a matrix acting on the space of waveforms.

The m-dimensional discrete Heisenberg-Weyl group provides
a unifying framework for a number of important sequences sig-
nificant in the construction of phase coded radar waveforms, in
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communications as spreading sequences, and in the theory of er-
ror correcting codes. Among the sequences which can be associ-
ated with the Heisenberg-Weyl group are the first and second or-
der Reed-Muller codes, the Welti sequences [3], and the Kerdock
and Preparata codes [4], which are non-linear binary error correct-
ing codes containing more codewords for a given minimum dis-
tance than any linear code. The Kerdock codes are associated with
decomposition of the Heisenberg-Weyl group into disjoint maxi-
mally commutative subgroups.

The paper is organised as follows. In Section 2 we intro-
duce the theory of the discrete Heisenberg-Weyl group. We then
briefly develop the theory of discrete radar and introduce the am-
biguity function of a waveform in this framework. Section 4 pro-
vides the main contribution of the paper, it extends the theory de-
veloped in [4] for the extraspecial 2-group, which is the discrete
Heisenberg-Weyl group of Section 2 corresponding to p = 2, to
the other Heisenberg-Weyl groups considered. We develop this
theory based on analysis of the ambiguity functions associated
with the irreducible representation of the group. In Sections 5 and
6 we relate the general theory to the known case of the Kerdock
codes [4] and to discrete radar. We find that the theory that leads to
the Kerdock codes in the multi-dimensional (p = 2) Heisenberg-
Weyl group leads to linear frequency modulated waveforms when
applied to discrete radar.

2. THE DISCRETE HEISENBERG-WEYL GROUPS

We begin by defining a configuration space A = Z
m
p consisting

of m-tuples of elements from the integers modulo p. In this paper
we will take p to be a prime number. Under addition A forms an
Abelian group. In radar theory the space A, with m = 1 would
represent discrete ranges, while in discrete quantum mechanics the
space A could represent possible discrete positions for a particle.

Define a Hilbert space H, having orthonormal basis

{|a〉 : a ∈ A}. (1)

which we refer to as the Dirac basis. Note that we use the “bra-ket”
notation for elements of the Hilbert space. An arbitrary element
|φ〉 ∈ H can be expanded in this basis as

|φ〉 =
∑
a∈A

〈a |φ〉 |a〉, (2)
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where 〈· | ·〉 is the inner product on H.
The dual group of A, denoted Â, is comprised of the homo-

morphisms from the group A onto the unit circle Π in C. Â is
also an Abelian group (under multiplication) and is (since A is fi-
nite) isomorphic to A. This isomorphism is made explicit through
identifying each b ∈ A with a γb ∈ Â, such that

γb(a) = ωb·a, (3)

for all a ∈ A, where ω = exp(2πi/p) is the pth root of unity
and · denotes the usual dot product on Z

m
p . We see from (3) that

the elements of Â are just discrete sinusoids, or multi-dimensional
versions of such. To each element of γb ∈ Â we can assign a
vector in H by

| b̂〉 =
im/2√|A|

∑
a∈A

ωb·a |a〉. (4)

The set {| â〉 : a ∈ A} also forms an orthonormal basis for H,
which we refer to as the Fourier basis. We can define the unitary
Fourier transform operator relating this orthonormal basis to (1) by

F =
im/2√|A|

∑
a,b∈A

ωb·a |a〉〈b |, (5)

where |a〉〈b | represents the cross projection operator on H whose
action on |φ〉 ∈ H is |a〉〈b | |φ〉 = 〈b |φ〉|a〉

We will denote the group A × Â � A × A, which is a vector
space since Zp is a field, by E. We will refer to E as the phase
space.

OnH we define the unitary operators {D(a,b) : (a,b) ∈ E}
by

D(a,b) =
∑
c∈A

ωb·c |c + a〉〈c |. (6)

Two such operators have the multiplication rule

D(a,b)D(a′,b′) = ωb·a′
D(a + a′,b + b′), (7)

from which we have the commutator

D(a,b)†D(a′,b′)D(a,b)D(a′,b′)† = ωa·b′−a′·bI, (8)

where † denotes adjoint.
The set of unitary operators on H

E = {T (λ,a,b) = ϑλD(a,b) : λ ∈ Z2p, (a,b) ∈ E}, (9)

forms an representation of the discrete Heisenberg-Weyl group on
H. This representation is irreducible [1, 4]. This means that there
are no nontrivial subspaces of H invariant under the action of E.

Now the center of the group E, Z(E), consists of the elements
{ϑλI : λ ∈ Z2p}, where I is the identity operator on H. The
factor space E/Z(E) is easily seen to be the phase space E.

Considering the commutation relation (8) we can define the
symplectic inner product

((a,b), (a′,b′)) = a · b′ − a′ · b, (10)

on the phase space E, and note that two operators D(a,b) and
D(a′,b′) commute if and only if ((a,b), (a′,b′)) = 0. We may
then identify subgroups of E consisting mutually commuting sets
of operators D(a,b) with isotropic subspaces of E. A subspace H

of E is isotropic if any pair of points (a,b), (a′,b′) ∈ H satisfy
((a,b), (a′,b′)) = 0. A isotropic subspace H of E corresponds
to the Abelian subgroup {D(a,b) : (a,b) ∈ H} of E.

Finally, in this section, we consider the space of linear oper-
ators O on the Hilbert space H. We have the following theorem,
which can be prove by substituting (6) into (11):

Theorem 1. Any operator S ∈ O can be represented as

S =
1

|A|
∑

(a,b)∈E

Tr(D(a,b)†S)D(a,b). (11)

3. DISCRETE RADAR

Let us see how the above theory applies to radar. For radar the con-
figuration space A = Zp consists of a large number p of discrete
times. To make the development more transparent we label the el-
ements of A by τ ∈ Zp and Â by ν ∈ Zp, rather than by a and b.
ν/p is the digital frequency. The phase space E in this case is the
time-frequency plane. The vectors |φ〉 ∈ H are our waveforms,
and their expansion coefficients in the Dirac basis φ(τ) = 〈τ |φ〉,
give their p-periodic time sequences. The Dirac basis waveforms
|τ〉 correspond to impulses at time τ . The Fourier basis correspond
to fixed frequency sinusoidal waveforms, since for these have co-
efficients 〈τ | ν̂〉 =

√
i/p ωντ .

Abstractly, the operation of the radar consists of transmitting
a waveform |φ〉 ∈ H, which is reflected by the environment, or
radar scene, and returns as the waveform |ψ〉 ∈ H. Thus, the radar
scene can be considered an operator, S, on H. The expansion (11)

S =
∑

(τ,ν)∈E

σ(τ, ν)D(τ, ν), (12)

can then be considered as a decomposition of the radar scene into
point scatters, each of which delay the waveform by a time τ and
Doppler shift the waveform by ν, with the return being multiplied
by a complex scattering amplitude σ(τ, ν). Theorem 1, implies
that the scatterer distribution σ(τ, ν) = Tr(D(τ, ν)†S)/|A|.

Suppose that we have an unknown radar scene S and we would
like to learn something about it. We transmit a waveform |φ〉 and
note the return |ψ〉. In the absence of noise we now know that
|ψ〉 = S|φ〉, or that

S = |ψ〉〈φ | + R, (13)

where the operator R, which annihilates |φ〉, R|φ〉 = 0, is unde-
termined. Thus, as a result of transmitting |φ〉, we now know the
action of the operator S̃ = S|φ〉〈φ |, which in terms of scatterer
distributions is

S̃ =
∑

(τ,ν)∈E

σ̃(τ, ν)D(τ, ν), (14)

where

σ̃(τ, ν) =
∑

(τ ′,ν′)∈E

σ(τ ′, ν′)Aφ(τ ′ − τ, ν′ − ν)ων(τ−τ ′). (15)

and the ambiguity function, A, given by

Aφ(τ, ν) = Tr(D(τ, ν)|φ〉〈φ |) = 〈φ |D(τ, ν)|φ〉. (16)

We now go back and consider the ambiguity function in the more
general setting of Section 2.
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4. COVARIANT TIGHT FRAMES AND AMBIGUITY
FUNCTIONS

The ambiguity function of a normalised vector |φ〉 ∈ H, Aφ :
E → C, is defined as

Aφ(a,b) = 〈φ |D(a,b)|φ〉, (17)

that is, the inner product of |φ〉 with D(a,b)|φ〉. An important
property of ambiguity functions is Moyal’s identity

1

|A|
∑

(a,b)∈E

Aφ(a,b)Aψ(a,b) = |〈φ |ψ〉|2, (18)

This result is obtained by expanding the projector |φ〉〈φ | accord-
ing to (11), multiplying by the projector |ψ〉〈ψ | and taking the
trace of the resulting equation. A special case of Moyal’s identity
is

1

|A|
∑

(a,b)∈E

|Aφ(a,b)|2 = 1. (19)

We can understand a great deal about the structure ambiguity
functions associated with various vectors H, by understanding the
orbits in H under the action of the Heisenberg-Weyl group E. The
orbit containing the vector |φ〉 consists of the set of vectors

{|λ,a,b, φ〉 = T (λ,a,b)|φ〉 : λ ∈ Z2p, (a,b) ∈ E}. (20)

Such orbits are called coherent states in the physics literature [5],
and as we demonstrate below they form tight frames [6] of vectors
in H. Here we shall refer to these as covariant tight frames (CTF)
and to |φ〉 as the fiducial vector of the CTF.

Of importance in understanding the structure of the orbit (20)
is the isotropy subgroup of the fiducial vector |φ〉. The isotropy
subgroup of |φ〉 consists of those T which merely multiply |φ〉 by
a phase,

T (λ,a,b)|φ〉 = eiχ(λ,a,b)|φ〉. (21)

Obviously, the isotropy subgroup Hφ of |φ〉 is at least Z(E), the
centre of E, although it may be larger. If the isotropy subgroup is
Z(E), then the orbit will be parameterized by the phase space E.
The isotropy subspace of |φ〉 is Hφ = Hφ/Z(E) ⊂ E and the
orbit is parameterized by the cosets Cφ = E/Hφ.

Thus, given a fiducial vector |φ〉, we consider the set of vectors

{|a,b, φ〉 = D(a,b)|φ〉 : (a,b) ∈ Cφ}. (22)

We have the following theorems, which will be proved else-
where:

Theorem 2. Let |φ〉 ∈ H be a normalized vector with isotropy
subspace Hφ ⊂ E. Then, either

1. Hφ is a maximal isotropic subspace of E, Aφ is unimod-
ular on Hφ and zero on H

c
φ, and the CTF {|a,b, φ〉 =

D(a,b)|φ〉 : (a,b) ∈ Cφ} is an orthonormal basis, or

2. Hφ = {(0,0)} and the corresponding CTF is parameter-
ized by the entire phase space E.

We will say the two maximal isotropic subspaces Hφ and Hψ

are disjoint if Hφ ∩ Hψ = {(0,0)}.
As a consequence of Moyal’s identity we also have the follow-

ing theorem which relates to the “angle” between the orthonormal
bases associated with two fiducial vector having disjoint maximal
isotropic isotropy subspaces.

Theorem 3. Let |φ〉 and |ψ〉 ∈ H have maximal isotropic isotropy
subspaces Hφ and Hψ which are disjoint, then

∣∣〈a,b, φ |a′,b′, ψ〉∣∣ =
1√|A| , (23)

for all (a,b) ∈ Cφ and (a′,b′) ∈ Cψ .

An example of two disjoint maximal isotropic subspaces is
HD = {(0,b) : b ∈ A} and HF = {(a,0) : a ∈ A}. HD

has the CTF given by the orthonormal basis (1) and can be asso-
ciated with fiducial vector |0〉, while HF has the CTF given by
the orthonormal basis (4) with fiducial vector | 0̂〉. The Fourier
transform operator F given in (5) transforms D(a,b) as

F †D(a,b)F = ω−a.bD(b,−a), (24)

Thus F induces a symplectic action, i.e., it preserves the inner
product (10), on the phase space given by f : E → E, such that
f(a,b) = (b,−a). This action exchanges HD and HF .

The question arises as to whether it is possible to choose a
set of vectors (waveforms) such that the supports of their ambigu-
ity functions are non-intersecting (except at (0,0)), while jointly
covering the whole of phase space. This is equivalent to covering
the whole of the phase space E with disjoint maximal isotropic
subspaces. At least in certain instances the answer is yes. The
construction in these cases works a follows [4].

Define a symplectic transformation on H by

W (P ) =
∑
c∈A

ϑ
c·Pc |c〉〈c |, (25)

where P is a symmetric matrix on Zp. It is important to note that
in this definition the quadratic form c · Pc is to be calculated in
Z2p. We have

W (P )†D(a,b)W (P ) = ϑa·PaD(a,b + Pa). (26)

W (P ) induces an action on the phase space wP : E → E, such
that wP (a,b) = (a,b + Pa). This action preserves the sym-
plectic inner product (10), since P is symmetric, and so it maps
maximal isotropic subspaces to other such subspaces. The scheme
is then to generate new maximal isotropic subspaces HP as

HP = wP (HF ) = {(a, Pa) : a ∈ A}. (27)

Two such subspaces corresponding to symmetric matrices P and
Q will intersect at only at solutions of (P − Q)a = 0. Thus,
the problem of covering E with disjoint maximal isotropic sub-
spaces will be solved if we can find a set of |A| − 1 non-singular
symmetric matrices P , over Zp, such that for any pair of matrices
P ,Q ∈ P , P − Q is non-singular. The covering would then be

E = HD ∪ HF ∪
( ⋃

P∈P
wP (HF )

)
. (28)

When this occurs the set of vectors

{|a〉 : a ∈ A} ∪ {| b̂〉 : b ∈ A}∪
{iλW (P )| b̂〉 : λ ∈ Z4,b ∈ A, P ∈ P},

(29)

is such that the magnitude of the inner product of any pair of vector
in the set is either 0 or 1/

√|A|. We discuss two cases in which
such a covering can be constructed.
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5. Z4-KERDOCK CODES

Kerdock codes [7] are non-linear binary error correcting codes
which contain more codewords for a given minimum distance than
any linear code. It was shown by Hammons et al. [8] that the
Kerdock codes could be constructed as binary images under the
Gray map of linear codes over Z4. The geometry of these codes
was studied extensively by Calderbank et al. [4] who demonstrated
their relationship to the extraspecial 2-group. This group is identi-
cal to the discrete Heisenberg-Weyl group (9) for p = 2, and most
of the theory developed in Section 4 can be found in [4] for this
case.

Here the configuration space A = Z
m
2 consist of the binary

sequences of length m. This case has been studied extensively in
the theory of error correction codes [4]. The Fourier basis is

| b̂〉 =

(
i

2

)m/2 ∑
(a,b)∈E

(−1)b.a|a〉. (30)

Apart from the normalizing constant (i/2)m/2, the coefficients of
the Fourier basis are related to the the first order Reed-Muller code
RM(1, m+1), in the following sense. If we apply group E, from
(9), to the vector | 0̂〉 we obtain the set of vectors

{iλ| b̂〉 : λ ∈ Z4,b ∈ A}, (31)

In the Dirac basis, neglecting the common normalization factor
(i/2)m/2, the coefficients of these vectors form RM(1, m + 1)
as a linear code of length 2m over Z4. If we then apply the Gray
map, {1 → 00, i → 01, (−1) → 11, (−i) → 10}, we then
obtain the conventional form of RM(1, m + 1) as a binary code
of length 2m+1. In a similar way the second order Reed-Muller
code RM(2, m + 1) corresponds to the set of vectors

{iλW (P )| b̂〉 : λ ∈ Z4,b ∈ A, P a binary symmetric matrix}.
(32)

In this case many are many possible sets of binary symmetric
matrices P which lead to a disjoint covering of the phase space
with maximal isotropic subspaces [4]. One possibility consists of
a vector space of non-singular Hankel matrices, with one binary
symmetric matrix with any given diagonal. The sets of the form

{iλW (P )| b̂〉 : λ ∈ Z4,b ∈ A, P ∈ P} ∪ {|a〉,a ∈ A}, (33)

are the Kerdock codes. Note that here the zero matrix is in P and
that W (0) = I . Obviously, the first set above lies within the sec-
ond order Reed-Muller code (32). The Welti sequences correspond
to a particular choice of P in (33).

6. DISCRETE RADAR REVISITED

In this case, since m = 1, the matrices in P are just numbers. In
fact, since p is prime, we can take P = {0, 1, · · · , p − 1}. The
p+1 maximal isotropic subspaces consist of the line {(0, τ) : τ ∈
{0, · · · , p − 1}} along with the lines {(τ, nτ) : τ ∈ {0, · · · , p −
1}}, for n ∈ P , in the phase space or time-frequency plane. This
time-frequency plane covering is displayed in Table 6 for p = 11.
The corresponding vectors (waveforms) are, for n ∈ P ,

|n, ν̂〉 = W (n)| ν̂〉 =

√
i

p

p−1∑
τ=0

θnτ2
ωντ |τ〉, (34)

Table 1. Tiling of the time-frequency plane by maximal isotropic
subspaces for p = 11.

ν

0 11 6 8 9 3 10 4 5 7 2
0 10 11 4 6 5 8 7 9 2 3
0 9 5 11 3 7 6 10 2 8 4
0 8 10 7 11 9 4 2 6 3 5
0 7 4 3 8 11 2 5 10 9 6
0 6 9 10 5 2 11 8 3 4 7
0 5 3 6 2 4 9 11 7 10 8
0 4 8 2 10 6 7 3 11 5 9
0 3 2 9 7 8 5 6 4 11 10
0 2 7 5 4 10 3 9 8 6 11
� 1 1 1 1 1 1 1 1 1 1

τ

for ν ∈ {0, · · · , p − 1}. These are linear frequency modulated
sinusoid or chips. The ambiguity function of such a chirped wave-
form |n, ν̂′〉 is

An,ν̂′(τ, ν) = θnτ2
ωτν′A0̂(τ, ν + nτ), (35)

where A0̂ is the ambiguity function of the waveform | 0̂〉. Thus,
the magnitude of the ambiguity (35) is

|An,ν̂′(τ, ν)| = |A0̂(τ, ν + nτ)| = δν+nτ,0. (36)

Thus, we can explicitly see the how the waveforms {|n, ν̂〉 : n ∈
P, ν ∈ {0, · · · , p − 1}} along with the Dirac basis waveform
{|τ〉 : τ ∈ {0, · · · , p − 1}}, have ambiguity functions with dis-
jointly cover the time-frequency plane.
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