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1. INTRODUCTION

Modern radar systems have considerable flexibility in their modes
of operation. In particular, it is possible to modify the waveform on
a pulse to pulse basis, and electronically steered phased arrays can
quickly point the radar beam in any feasible direction. Such flex-
ibility calls for new methods of scheduling both of the waveform
and the beam direction so as to optimize the radar performance.

We consider a radar system capable of rapid beam steering
and of waveform switching. The transmit waveform is chosen
from a small library of such. The operational requirement of the
radar is to track a number of manoeuvring targets while performing
surveillance for new potential targets. Tracking is accomplished by
means of an LMIPDA (Linear Multitarget Integrated Probabilistic
Data Association) tracker as described in [1]. Interacting multi-
ple models (IMM) is used to model manoeuvering targets in the
tracker. LMIPDA provides a probability of track existence, per-
mitting a “track-before-detect” technique to be adopted. “False
alarm” tracks are maintained until the probability of track exis-
tence falls below a threshold.

Our aim is to maintain the tracks of the existing targets to
within a specified accuracy as determined by the absolute value
of the track error covariance matrix. However, this has to be done
within the time available given that a full scan has to be performed
within a prescribed interval. We give an algorithm for scheduling
revisits to measure the targets while maintaining surveillance.

2. PROBLEM FORMULATION

We postulate a radar system tracking T targets where T is a ran-
dom variable 0 ≤ T ≤ T0 and the tth target is in state xt(k)
at epoch k. In addition the radar undertakes surveillance to dis-
cover new targets. This surveillance is assumed to require a certain
length of time, say Tscan within every interval of length Ttotal. The
remainder of the time is spent measuring targets being tracked. We
aim to schedule revisit times to targets within these constraints.

A major assumption of IMM-based algorithms is that the tra-
jectory of the target can be described at any time by one of M <
∞ pre-defined dynamical models. In this context, we assume that
the dynamical models are independent of the target and associ-
ated to each is a corresponding state propagation matrix Fm (m =
1, 2, . . . , M). The recursion for state transition is

xt(k) = Fm(k)xt(k − 1) + νt
m(k), (1)

where the index m is a possible value of a random variable M(k) ,
the dynamical model which takes any discrete value [1, 2, · · · , M ].

Process noise (Gaussian) νt
1(k), · · · , νt

M (k) depends on both tar-
get and dynamical model and is independent between different val-
ues of each of these indices. The covariance matrix of νt

m(k) is
denoted by Qt

m(k).

In the tracker, the dynamical model of the tth target M t(k) is
assumed to evolve as a Markov Chain with given transition proba-
bilities, denoted by

πt
m,� = P{M t(k) = m|M t(k − 1) = �}; j, � ∈ [1, · · · , M ].

(2)

It is assumed that N different measurement modes are avail-
able for each target, each given by a measurement matrix Ht

n n =
1, 2 . . . , N :

zt(k) = Ht
n(k)xt(k) + ωt

n(k) (3)

where here zt(k) is the measurement to be obtained from the tth
target at time k, ωt

n(k) is the measurement noise, and n = n(k) is
a control variable for the measurement mode. We will also permit
measurement of only one target at each epoch. The variable t̃ =
t̃(k) represents the choice of target to which the beam is steered
at the kth epoch. The measurement noise ωt

1(k), · · · , ωt
N (k) are

zero mean white and uncorrelated Gaussian noise sequences with
the covariance matrix of ωt

n(k) denoted by Rt
n(k). In our case all

of the measurement matrices are identical, but the noise is wave-
form dependent.

In cluttered environments, measurements can result from zero
or more targets as well as zero or more clutter scatters at each
scan. Target measurements are assumed unidentified, but present
with probability of detection PD , not necessary identical for each
target (for example, in a radar application they will be range de-
pendent) and not necessarily constant over time. The set of actual
measurements obtained at time k, selected with gating probability
PG, is denoted by z(k), and the i-th measurement from this (or-
dered) set z(k) by z(i, k), where i = 1, · · · , mk; mk ≥ 0 is
the number of measurements at time k. This selection of measure-
ments is often referred to as validation of measurements or gating
[2]. Briefly, gating is a way to select a subset of all sensor measure-
ments based on the current estimate of the target state. If the target
exists and is detected, the target measurement will be selected with
gating probability PG. The purpose of gating is the reduction of
computational time. The history of all selected measurements up
to and including time k is denoted by Zk = z(k)

⋃
Zk−1. Given

the dynamics Eq. (1) and measurements Zk, we aim to estimate
recursively the a posteriori probability of target existence ψt

k|k,
the state estimate and error covariance, x̂t

k|k P t
k|k respectively for

the tth target.
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3. TRACKING

The choice of measurement is made using the control variable
n(k). In fact two choices are made at each epoch, the target to
be measured and the waveform used. More than one target may
be in the beam and then measurements of each target will be up-
dated using the LMIPDA-IMM algorithm described in [1]. We
briefly discuss it here. This is a recursive algorithm combining a
multi-target data association algorithm (LMIPDA) with manoeu-
vring target state estimation implemented using IMM. IMM con-
sists of a filter (usually Kalman or similar) bank, one for each pos-
sible target trajectory model. For each track t, filter inputs consist
of:

• target existence, modelled by a random variable χ, assumed
to evolve as a Markov chain and taking either of two values
[3]. χ = 1, 0 according as the target exists or not. The
value of χ for each track t is updated with measurements at
each scan.

• predicted state for each IMM model j, obtained from the
previous state by state propagation:

– state prediction probability density function (pdf) pt(xk|Mk =
j, Zk−1), described by its mean x̂t

k|k−1(j) and its er-
ror covariance P t

k|k−1(j),

– predicted model state probability

µt
k|k−1(j)

∆
= P t{Mk = j|Zk−1}

and

– a priori measurement pdf pt(zk|Mk = j, Zk−1).

• measurement set delivered by sensor at time k, which may
be empty.

For each track t, the filter output at time k consists of:

• a posteriori probability of target existence ψt
k|k, then used

for confirmation or termination of tracks;

• track state estimate and estimate covariance, x̂t
k|k and P t

k|k;

• filter inputs for time k + 1 for next recursion, enumerated
above, ψt

k+1|k, and, for each IMM model j, x̂t
k+1|k(j),

P t
k+1|k(j), µt

k+1|k(j) and pt(zk+1|Mk+1 = j, Zk).

The waveforms impinge on the measurement process through
the covariance matrix of the noise ωt

n(k). We use the basic sensor
model proposed in [4]. While this has limitations, it is simple and
therefore useful as a starting point for discussion of the problem.
In this model, the sensor is characterised by a measurement noise
covariance matrix which is waveform dependent

Rφ = TJ−1
φ T, (4)

where Jφ is the Fisher information matrix corresponding to the
measurement using waveform φ and T is the transformation ma-
trix between the time delay and Doppler measured by the receiver
and the target range and velocity. The Fisher information is given
by an expression involving the normalised second order time and
frequency moments of the waveform φ. It is also expressible in
terms of the Hessian of the squared absolute value of the ambi-
guity function of the waveform at the origin of the range-Doppler
plane. This calculation is done in [5]. It should be pointed out
that the use of the Fisher matrix here is an approximation. It really

corresponds to the Cramér-Rao lower bound on the estimator for
the target from this measurement. It can be shown that the estima-
tor here is asymptotically efficient (see[6], pp. 38–39) in that the
covariance matrix approaches the Cramér-Rao lower bound over a
large number of measurements (loc.cit.).

4. SCHEDULING

As we have already stated, at each epoch a target track and a
beam direction have to be selected. The scheduler has a list ∆ =
{δ1, δ2, . . . , δK} of “revisit intervals”. Each of the numbers δk is
a number of epochs representing the possible times between mea-
surements of any of the existing targets. It is assumed for the pur-
poses of scheduling and tracking that during any of these revisit
intervals the target dynamics do not change, though the simulator
permits target maneuvers on an epoch by epoch basis.

In order to determine which target to measure and which wave-
form to use, for each existing target and each waveform the track
error covariance P t

k−1|k−1 is propagated forward using the Kalman
update equations and assuming each of the different potential re-
visit intervals in the list ∆ in the dynamics. In the absence of mea-
surements the best we can do is to use the current knowledge to
predict forward and update the covariance matrix, dynamic model
pdf and probability of track existence. The algorithms now be-
comes as follows:

• IMM mixing [7, 8, 1] is conducted as usual;

• Forward prediction is then performed separately for each
dynamical model. Because the dynamics of the target de-
pends on the revisit time δ ∈ ∆ this calculations are per-
formed for each revisit time.

• Covariance update: this is normally done with the data, but
since we are interested in choosing the best sensor mode
at this stage the following calculations are required. If the
target does not exists there will be no measurements orig-
inating from the target and the error covariance matrix is
equal to the a priori covariance matrix, if the target exists, is
detected, and the measurement is received then the error co-
variance matrix is updated using the Kalman equation. The
covariance update is calculated using Bayes rule, namely,

Pk|k(j, δ) = (1 − ψk|k−1PDPG)Pk|k−1(j, δ)

+ ψk|k−1PDPG(I − K(φ, δ)H)Pk|k−1(j, δ)

= (I − ψk|k−1PDPGK(φ, δ)H)Pk|k−1(j, δ).

(5)

where ψk|k−1 is the a priori probability of track existence,
PDPG is the probability that target is detected and its mea-
surement is validated. K(φ, δ) is a Kalman gain calculated
for each sensor mode; that is, for the waveform φ and revisit
time δ. Both φ and δ take discrete values from waveform
library and revisit time set ∆.

K(φ, δ) = Pk|k−1(j, δ)HS−1(φ), (6)

where S is innovation covariance matrix, calculated as

S = HPk|k−1H
T + Rφ

.

• The dynamic model and track existence pdfs are updated in
a similar manner. If the target does not exist it produces no
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measurement; if it does and is detected the expected mea-
surement pdf is calculated as follows:

pj(zk) = p(zk|χk = 1, Mk = j, Zk)

= N (Hx̂k|k−1(j); Sj);

p(zk) = p(zk|χk = 1, Zk) =

M∑
i=1

µk|k−1(i)pi(zk).

(7)
The dynamic model and track existence pdfs are updated :

µk|k(j) =
pj(zk)µk|k−1(j)

M∑
i=1

pi(zk)µk|k−1(i)

ψk|k =
p(zk)ψk|k−1

ρ(zk)(1 − ψk|k−1) + p(zk)ψk|k−1

,

(8)

where ρ(zk) = p(zk|χk = 0, Zk) is the estimated clutter
and other targets density at zk( see[1]).

• The next step is to combine the estimates for all dynamics
models j = 1, . . . , M into one, using the standard “IMM
combination” formulae [7, 8, 1].

The above calculations are performed for all combinations of
revisit times in ∆ and waveforms in the library. Evidently then
the number of combinations grows exponentially in the number
of steps ahead, and soon becomes impractical for implementation.
Having obtained the error covariance matrix for all possible com-
binations of sensor modes, the optimal sensor mode (waveform) is
then chosen for each target to be the one which gives the longest re-
visit time, while constraining the absolute value of the determinant
of the error covariance matrix to be smaller than the prescribed up-
per limit K. In other words, our objective is

φ, δ = arg max ∆, subject to | det(Pk|k)| ≤ K. (9)

Scheduling is then done to permit a full scan over the prescribed
scan period while also satisfying the constraints imposed by the
revisit times obtained by the sensor scheduler. Once a target is
measured, its revisit time is re-calculated.

We note that for many manoeuvring targets there may be no
solution to the scheduling problem that satisfies the constraints.
However, we have not simulated a situation in which this happens.

We have, on the other hand done simple simulations for the
case of one-step ahead and two-step ahead scheduling. In the lat-
ter case, the revisit times and waveforms are calculated while the
target states are propagated forward over two measurements, with
the cost function being the absolute value of the determinant of
the track error covariance after the second measurement. Only the
first of these measurements is done before the revisit calculation is
done again for that target, so that the second may never be imple-
mented.

In the next section we present the results of the simulation for
two-step versus one-step ahead scheduling.

5. SIMULATION RESULTS

Simulations were performed to compare the effects of no schedul-
ing with random choice of waveform against one-step and two-
step ahead beam and waveform scheduling as described in the last
section. All three simulations were performed 100 times on the

Fig. 1. Scene with Maneuvering Target in Clutter

same scenario. In the first case, measurements were taken at each
scan with no further measurements beyond the scan measurements
permitted. The waveforms were chosen at random from the three
waveforms in the library. The simulated scene corresponded to
a surveillance area of 15km by 15km contained two maneuver-
ing land targets in stationary land clutter which had small ran-
dom Doppler to simulate movement of vegetation in wind. The
number of clutter measurements at each epoch was generated by
samples from a Poisson distribution with mean ∼ 5 per scan per
sq.km. Target measurements were produced with probability of
detection 0.9. The target trajectories were simulated as shown in
Figure 1. The target state xt consisted of target range, target range
rate and target azimuth. The targets were performing the follow-
ing maneuvers: constant velocity, constant acceleration, constant
deceleration and coordinated turns with constant angular velocity.
In these experiments we used the waveform library consisting of
three waveforms: an up-sweep chirp, a down-sweep chirp and an
unmodulated pulse. In the scheduling cases, surveillance time used
approximately 80 percent of each scan period, the remaining 20%
being allocated as described above to the maintenance of tracks of
existing targets.

The outcome of experiments suggests that in the presence of
clutter tracking performance can be improved with scheduling and
even more with multiple step ahead scheduling as opposed to one
step ahead. The results are represented in Figure 2. It should be
observed in Figure 2 that RMS error was considerably worse espe-
cially during the early part of the simulation for the unscheduled
case. In fact the RMS error in the unscheduled case is larger imme-
diately after significant manoeuvres as can be expected. Of course,
in this case the revisit time is fixed and is not plotted in the second
subplot. One observes, that, for the two-step ahead case, tracking
accuracy is improved (top plots) slightly over the one-step ahead
case but with a significant reduction in revisit times to maintain
those tracks.

V - 891

➡ ➡



Fig. 2. Root Mean Square Error (RMSE) and Revisit Count for
one vs. two step ahead beam and waveform scheduling

6. CONCLUSION

We have described a system for scheduling of waveforms and beam
directions of a radar system to detect and track multiple manoeu-
vring targets, based on the LMIPDA-IMM tracker. We have simu-
lated scenarios using this technique to track multiple manoeuvring
targets in simulated clutter data with both one-step ahead and two-
step ahead scheduling. Our results indicate that real improvements
are obtained in this context by scheduling two steps ahead.
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[3] D. Mušicki, R. Evans, and S. Stanković, “Integrated proba-
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