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ABSTRACT

In this paper, we present an algorithm for dynamic wave-

form selection and configuration for agile sensors in a tar-

get tracking application. The method selects and configures

generalized frequency-modulated (FM) waveforms with

time-varying signatures to minimize predictedmean squared

tracking error. We derive the Cramer-Rao lower bound

(CRLB) for these signals and use the CRLB in conjunc-

tion with the unscented transform to compute the predicted

mean square error. The method is computationally feasible

and applicable to nonlinear scenarios as demonstrated in our

simulations.

1. INTRODUCTION

Agile sensors use waveforms that can change from pulse

to pulse to match the target or the environment in order to

improve system performance. In tracking applications, for

example, the transmitted waveform can be designed and its

parameters optimally selected to reduce resource costs and

maximize performance criteria. Thus, it is important to se-

lect the appropriate pulses on the fly and to design algo-

rithms for optimal waveform scheduling at the sensor front-

end to best perform a specified task.

Dynamic waveform selection can significantly improve

system performance in several applications. For example,

optimal waveform selection for target detection over a fi-

nite horizon using stochastic dynamic programmingwas ad-

dressed in [1]. In [2, 3], the authors considered the problem

of optimal waveform selection to track a target using a sen-

sor that chooses waveform parameters to minimize the er-

ror variance of the estimate of the target state vector. The

target motion was one-dimensional, which allowed the use

of a Kalman filter tracker and resulted in closed form re-

lationships between the waveform parameters and the cost

functional to be minimized. As a consequence, their solu-

tion cannot be extended to more complex target motions.

In [4], this work was extended to tracking a target using a

probabilistic data association filter in the presence of clutter.

In this paper, we consider tracking a target moving in

two-dimensions (2-D) using a class of generalized FM
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(GFM) chirp signals. These signals are time-varying (TV)

as their frequency content changes nonlinearly with time.

The varying waveform signatures have different supports in

the time-frequency plane and thus bandwidths that depend

on distinct waveform parameters. Also, GFM chirps such

as linear and hyperbolic chirps have been shown to pro-

vide more accurate estimates of range and Doppler in sonar

applications than signals with constant signatures [5].

We propose a configuration algorithm for waveform de-

sign and scheduling that selects a waveform and its param-

eters to minimize the predicted mean square tracking error.

We use the CRLB, which we derive for GFM chirps, in con-

junction with the unscented transform (UT) [6] to compute

the predicted mean square error. Our configuration algo-

rithm can be applied to any signal for which the CRLB can

be computed and is feasible for real-time implementation.

2. PROBLEM FORMULATION

2.1. GFM waveform class

The target is tracked by two sensors, A and B, and each

sensor transmits a waveform with various parameters. We

consider a class of GFM waveforms, with complex Gaus-

sian envelopes, that are defined as

� � � � � 
 �
 � � � ��
e � � � � � � ! ## $ # e % � ' ) + - . / . � 1 2 (1)

Here, � parameterizes the duration of the Gaussian enve-
lope, 3 is the FM rate, 4 � � � is a real-valued, differentiable
phase function and � 6 � � is a reference time. Some ex-
amples of GFM waveforms include the linear FM (LFM),

hyperbolic FM (HFM) and exponential FM (EFM) wave-

forms. They are defined in (1) with phase function, 4 � � � ,
and bandwidth, 8 , for an effective pulse length 9 ; , as sum-
marized in Table 1. These waveforms have distinct TV sig-

natures in the time-frequency plane that are obtained by the

derivative of 4 � � � . For sensor < , < � A, B, = ? @ � A � ? @ C 3 ? @ E F
represents the GFM waveform parameter vector at time G .
We also consider the amplitude-only modulated Gaussian

waveform defined as in (1) with 4 � � � � � 6 and = ? @ � � ? @ .
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Waveform Phase Function, � � � � Bandwidth, �
LFM � � � 
 �
HFM � � � 
 � � � � � � 
 � � � � 

EFM e � � � � e � �  �

Table 1. Phase function and bandwidth of GFMwaveforms.

2.2. State-Space model

The target dynamics are modeled using a linear, constant

velocity model. Let " # $ & ' # ) # ,' # ,) # / � represent the
state of a target at time 1 , where ' # and ) # are the ' and) position coordinates respectively, and ,' # and ,) # are the
respective velocities. The target dynamics model and ob-

servation 2 # are
" # $ 4 " # 5 7 � 8 # � 2 # $ 9 � " # � � ; # � (2)

where target acceleration is modeled by 8 # , a zero-mean,
Gaussian noise process with covariance matrix < . 4 and< are defined in [7]. Sensor = measures the time delay> ? and Doppler shift @ ? of the received signal. The range
and range-rate of the target are given by A ? $ C > ? � E and,A ? $ C @ ? � � E G I � , where C is the velocity of propagation of
the waveform and G I is the carrier frequency. The non-
linear relation between " # and 2 # is given by 9 � " # � $& A L# ,A L# A M# ,A M# / � where

A ?# $ N � ' # P ' ? � � � � ) # P ) ? � �,A ?# $ � ,' # � ' # P ' ? � � ,) # � ) # P ) ? � � � A ? T
The measurement errors are modeled by ; # , a zero-mean,
Gaussian noise process with covariancematrix U � V # � . Here,V # $ & V L # � V M # � / � is a combined waveform parameter vec-
tor for both sensors at time 1 . The measurement error thus
depends explicitly upon the transmitted waveform. Due to

the nonlinearity in the observation model, we use a particle

filter to recursively estimate the target state [8].

2.3. Cost function minimization

Given the sequence of observations up to time 1 P Y , we
want to find the waveform and its parameters that minimize

the predicted mean square tracking error at time 1 :Z � V # � $ \ ] ^ _ ` ^ � `
b d

^ f
b

g � " # P i" # � � � " # P i" # � l � (3)
where \ n o q is the expectation over " # and 2 # , and i" # is
the estimate of " # given the sequence of observations from
1 to 1 that is obtained by the particle filter. The sensors
are configured at each time 1 to minimize Z � V # � in (3) by
appropriately selecting a waveform and its parameter V # .

3. CRLB FOR GFM PULSES
In this section, we derive the relationship between the mea-

surement errors and the waveform. From the narrowband

ambiguity function (AF), we first derive the CRLB on the

estimation errors for range and range-rate when the GFM

waveforms are used. The CRLB is a suitable characteriza-

tion of the optimal receiver under conditions of high signal-

to-noise ratio (SNR) as the CRLB is shown to be related to

the measurement error covariance U � V # � .
The ambiguity function of a signal r � � � is s 4 � � > � @ � $u w5 w r x � � z � { r | x � P z � { � 5 � � � � � � � , where > and @ can cor-

respond to the errors in the estimates of the delay and

Doppler shift of the pulse when reflected off the target. The

negative of the second derivatives of the AF, evaluated at> $ � � @ $ � , yield the elements of the Fisher information
matrix (FIM) [9]. Denoting the SNR as � , the FIM is� $ � � 7� � � � � � � � E � � � � �E � � � � � � E � � � � �� � T
We computed its elements for the GFM pulse in (1) as

P � � s 4 � � > � @ �
� > � ���� z � �� � � $ YE � � � � � � �

P � � s 4 � � > � @ �
� > � @ ���� z � �� � � $ E � � � � �

P � � s 4 � � > � @ �
� @ � ���� z � �� � � $ � E � � � � �E � where

� � � � $ � E � � � � � w
5 w Y� � � e 5   �¡ � & � ¢ � � � / � � � � (4)

� � � � $ E � � � w
5 w �� � � e 5   �¡ � � ¢ � � � � � � (5)

and � ¢ � � � $ � � � � � � � � . The CRLB on the variance of the er-
ror in the estimate of & > � @ / � is given by � 5 7 . In a matched-
filter receiver, the maximum likelihood estimates are jointly

asymptotically Gaussian with covariance matrix
� 5 7 [9].

We restrict our attention to cases where the SNR is high

and there is no clutter. Hence, the side lobes of the AF may

be neglected, and
� 5 7 becomes a suitable characterization

of the optimal receiver.

Since A $ C > � E and ,A $ C @ � � E G I � , the CRLB on the
error variance of the estimate of & A � ,A / � is given by ¥ � 5 7 ¥ �
where ¥ $ diag � C � E � C � � E G I � � . � 5 7 depends explicitly on
the waveform parameters due to (4) and (5), and the mea-

surement error covariance at the = th sensor is U � V ? # � $¥ � � ?# � 5 7 ¥ � . We assume that the noise at each sensor is in-
dependent and hence U � V # � $ diag � U � V L # � � U � V M # � � .
4. WAVEFORM SELECTION USING THE UT

We use the unscented particle filter [8] to compute the prob-

ability density of the target state conditioned on the
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observations. The waveform selection is accomplished by

a grid search over all possible waveforms and their param-

eters. At each point of the grid, the expected cost in (3) is

approximated using the UT [6] as follows.

Let � � � � � � � � � � � 	 represent the error covariance
of the estimate of the state given the observations through

� � � . We first predict the error covariance at time � using
the dynamics model in (2):

� � � � � � � � � 	 � � � � � � � � � � � � � 	 � � � � �
To implement the UT, we select � � � sigma points � � ,� � � � � � � � � � � and corresponding weights. A transformed

set of sigma points � � �  � � � 	 is computed. Then, we
calculate � " " , the covariance of � � , and � � " , the cross co-
variance between � � and � � , using the sigma points and
the weights [6].

Let $ � & 	 represent the & th waveform parameter vector,& � � � � � � � * � � , with the corresponding noise covari-
ance + � $ � & 	 	 calculated as in Section 3. The estimate error
covariance for $ � & 	 is

� .� � � � � � 	 � � � � � � � � � � 	 � � � " 1 � " " � + � $ � & 	 	 5 6 7 � �� " �
and the approximate expected cost is given by 89 � $ � & 	 	 �
Trace < � = . >� � � � � � 	 @ . For each parameter vector $ � & 	 , & �

� � � � � � * � � , 89 � $ � & 	 	 is calculated and the configuration
that results in the least cost is selected as $ B .
To implement the grid search, we form * combinations

of waveform parameter vectors by varying C and D for each
waveform. The grid point spacing for C and D is

C � E 	 � C H I K � E � C H M � � C H I K 	
O � � � E � � � � � � � O � � (6)

D � P 	 � � D H M � �
P R D H M �T � � � P � � � � � � � T � � � (7)

Here, C � E 	 are the values of the envelope parameter andC H I K and C H M � are bounds that are determined by the con-
straints on the pulse duration V W . The FM rate values for
each C � E 	 and for each considered waveform X 7 � � � � � X Z ,
are given by D � P 	 where D H M � is the maximum possible
FM rate which is obtained from Table 1 by using the same

fixed bandwidth ] . Thus, each sensor has O T `
possible

configurations obtained by varying the waveforms and their

parameters and * � � O T ` 	 b
. Note that if one of the

`
waveforms is a Gaussian pulse, there is no FM rate associ-

ated with it and * � � O T � ` � � 	 � O 	 b
. For LFM chirps

only, we also considered stochastic optimization for this

2-D problem in [7]. Though the performance is compara-

ble, the stochastic approximation approach was more com-

putationally intensive than the new proposed algorithm.

5. SIMULATION RESULTS

The simulation setup consists of a single underwater target

that is free to move in a 2-D plane. The carrier frequency is

d f = 25 kHz and the velocity of sound in water is 1500 m/s.
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Fig. 1. Position estimate of the target in Example 1. Sensors
A and B are located at (200,975) and (0,220) m.

The effective pulse length, V W , is chosen to be the time in-
terval over which the signal amplitude is greater than 0.1%

of its maximum value. This further determines the value ofC � V W h j , where j � k � l n n p . For all waveforms, the pulse
length is constrained to lie in the range [0.01,0.3] s while

the bandwidth is limited to ] � 5 kHz. We assume perfect
target detection and zero probability of false alarm.

Example 1. We first test the waveform parameter selection
algorithm by choosing C for a single Gaussian waveform.
The SNR at a distance E from a sensor is q � � � � � � h E 	 s .
Fig. 1 shows the trajectory of the target and a typical simu-

lation of the estimates of its position obtained when the sen-

sors use waveforms with fixed durations of 0.01 s and 0.3 s,

and when the duration is dynamically selected. The selected

pulse length and the tracking mean square error (MSE) av-

eraged over 100 simulations are shown in Fig. 2.

Example 2. In this example, the two sensors independently
choose between the

` � n waveforms in Table 1. Our sim-
ulations showed that the lowest cost for a particular wave-

form is obtained when its parameters are set to their limiting

values as defined by the system constraints. In (6),
O � R

so that C � E 	 � 0.0013, 0.404, and in (7) we set T � n .
For the HFM pulse, D H M � is set to the maximum allowable
FM rate, which, for the purpose of the simulation, was set

to 500000. We further require that V � ] h D H M � . The SNR
at distance E is q � � � k w h E 	 s . Fig. 3 shows a comparison
of the total MSE, averaged over 100 simulations, when the

target in Fig. 1 is tracked using the three pulses with our

proposed algorithm. We find that the waveform selected is

the HFM pulse with the maximum possible value of C .
6. DISCUSSION

When the waveform is only parameterized by its pulse length,

as with the Gaussian pulse in Example 1, the measurement

errors for position increase while those for velocity decrease

with increasing pulse length. The errors are also uncorre-

lated. This opposing behavior leads to a trade-off between
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Fig. 2. (a) Dynamic pulse length selection and (b) averaged
tracking error for the waveform selected in Example 1. In

(b), � � � � � � � s � � 
 , � � � � � � s � 
 
 and configured � � (+) .
the accuracy of range and range-rate estimation which the

tracker exploits by dynamically selecting the waveform

pulse length that results in the lowest total tracking error.

For the GFM waveforms in Example 2, the estimation er-

rors are correlated. When the measurement noise is Gaus-

sian, the conditional variance for range-rate errors given the

range may be shown to be � � �� � � � � � � � � � � � �� � � 
 for all
pulses. The conditional variance on range errors given the

range-rate, � �� � �� , depends upon � � � 
 in (4). It is approxi-
mately obtained from � � �  
 as
LFM:

� �
� � " � # �

� $ EFM:
� �

� � " � e
% & ( ) % *� � + erf � � 
 
 $

HFM:
� �

� � " � �
� � - /

) / 0% 2 3 e ) 4 56 5 0& 7 9 � : � * 5
; < � (8)

Intuitively, the configuration algorithm must choose the

waveform for which � �� � �� is the smallest. From Table 1,
the FM rate for the HFM pulse is not constrained by the

value of � (and thus � � ) in contrast to the LFM and EFM
pulses. Thus, it can always be chosen as the maximum al-

lowed value. For a given " , � can be chosen large and � �� � ��
in (8) is the lowest for the HFM waveform. It thus provides

the best tracking performance as demonstrated in Fig. 3.

7. CONCLUSION

Most realistic tracking applications are characterized by non-

linearities. The difficulty of predicting costs in closed form

in such scenarios complicates the optimal waveform selec-

tion problem. In this work, we have shown that it is pos-

sible to select the next transmitted waveform on the basis

of an expected predicted cost in a computationally feasible

manner using the unscented transform and a grid search.
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Fig. 3. Averaged MSE using fixed and configured wave-
forms and waveform parameters.

We have applied the selection algorithm to the tracking of
an underwater target by two fixed sensors using a class of
GFM waveforms. Two simulation examples demonstrate
the capabilities of the proposed algorithm.
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