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ABSTRACT

The new generation of synthesis radio telescopes now being
proposed, designed, and constructed face substantial prob-
lems in making images over wide fields of view. Such ob-
servations are required either to achieve the full sensitivity
limit in crowded fields or for surveys. The Square Kilo-
metre Array [1] now being developed by an international
consortium of 15 countries will require advances well be-
yond the current state of the art. We review the theory
of synthesis radio telescopes for large fields of view. We
describe a new algorithm, W projection, for correcting the
non-coplanar baselines aberration. This algorithm has im-
proved performance over those previously used (typically
an order of magnitude in speed). Despite the advent of W
projection, the computing hardware required for SKA wide
field imaging is estimated to cost up to $500M (2015 dol-
lars). This is about half the target cost of the SKA. Recon-
figurable computing is one way in which the costs can be
decreased dramatically.

1. THE SQUARE KILOMETRE ARRAY

The goal of the Square Kilometre Array is to provide a large
increase in the sensitivity of our observations of the radio
sky. The sensitivity will be approximately 50 times better
than that of the currently most sensitive telescope, the Very
Large Array. There are many technical challenges to be
overcome in the design and construction of the SKA. Prime
amongst these is the challenge of constructing collecting
area for the cost of a few hundred dollars per square meter.
There are various concepts for how this can be done, includ-
ing phased arrays, small hydro-formed or stress parabolic
antennas, huge flat antennas fed from a dirigible, and mas-
sive antennas constructed in depressions in the ground. Site
selection for the array is also complex, since SKA requires
both low radio frequency interference and baselines up to
3 000 Km. The digital challenges are substantial as well,
ranging from transmission of the signals to a common loca-
tion, the correlation of many wide band signals, and finally
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the construction of images at the full sensitivity of the array.
It is this latter topic that we consider.

2. THE NON-COPLANAR BASELINES
ABERRATION

The response of a narrow-band phase-tracking radio inter-
ferometer to spatially incoherent radiation from the far field
can be expressed by the following relation between the spa-
tial coherence, or ‘visibility’, V (u, v, w), and the spectral
intensity, or brightness, I(�, m);

V (u, v, w) =

∫
I(�, m)e−2πi[u�+vm+w(

√
1−�2−m2−1)]d�dm

(1)
In this equation, the baseline coordinates, (u, v, w), and

direction cosines, (�, m) have their usual definitions [2].
When the term 2πw(

√
1 − �2 − m2 − 1) is much less than

unity, it may be ignored, and a two dimensional Fourier rela-
tionship results. The visibility function is then only a func-
tion of (u, v):

V (u, v) =

∫
I(�, m)e−2πi[u�+vm]d�dm (2)

When term 2πw(
√

1 − �2 − m2 − 1) is comparable to
or exceeds unity, a two dimensional Fourier transform can-
not be used. The value of this term is roughly Bλ

D2 , where
B is the maximum baseline length, D is the antenna diame-
ter, and λ is the observing wavelength. Wide-field imaging
is affected by this non-coplanar baselines effect when ob-
serving with small apertures, long baselines, or long wave-
lengths. In optics terminology, the effect is a vignetting:
a limitation of the field of view due to the optical system.
Sources are moderate distances from the image center are
distorted, and sources farther away may vanish altogether.

Cornwell and Perley [3] reviewed the algorithms avail-
able to deal with this effect, and presented an algorithm in
which the image space is divided into facets, over each of
which a two dimensional Fourier transform may be used.
The essence of W projection [4, 5] is to project w out of the
problem, thus allowing a two dimensional Fourier transform
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to a single image to be used. We rewrite equation 1 as a con-
volution between the Fourier transform of the sky bright-
ness and the Fourier transform of an image plane phase term
parametrized by w.

V (u, v, w) =

∫
I(�, m)G(�, m, w) e−2πi[u�+vm]d�dm

(3)

G(�, m, w) = e−2πi[w(
√

1−�2−m2−1)] (4)

Applying the Fourier convolution theorem, we find that
the key result that:

V (u, v, w) = G̃(u, v, w) ∗ V (u, v, w = 0) (5)

This holographic relationship results because the origi-
nal brightness is confined to a two dimensional surface (the
celestial sphere).

In practice, interferometers often must measure the vis-
ibility function in the three dimensional space (u, v, w). An
exception is when all the samples lie in a plane (this occurs,
for example, for East-West arrays). In that case, a simple
reprojection of the coordinate system restores a two dimen-
sional Fourier transform [6, 7]. In the more usual ”non-
coplanar baselines case”, equation 5 may be used to project
the visibility function appropriately.

To understand the physical origin of the non-coplanar
baselines effect, we can use a small angle approximation:

G(�, m, w) = eπi[w(l2+m2)] (6)

G̃(u, v, w) =
i

w
e−πi[ (u

2+v
2)

w
] (7)

The convolution function may be recognized as imple-
menting Fresnel diffraction of the electric field sampled by
one antenna to the plane of the other antenna [5], a neces-
sary step that has been previously ignored.

3. ALGORITHMIC DETAILS

Imaging of the sky brightness by radio interferometric ar-
rays typically requires deconvolution of the point spread
function arising from the limited sampling of the visibil-
ity function in the (u, v) plane [2]. In the case of wide-
field imaging, the sampling is still limited but occurs in the
(u, v, w) space. To understand how W projection may be
inserted into our typical deconvolution algorithms, we must
describe how these are structured. We can write the mea-
surement equation as a linear equation:

d = Ai + e (8)

where d, i and e are vectors for data, image, and noise,
and A is the (non-square) observation matrix. In the usual
case of simple radio interferometry, the elements of A are
the cosines and sines of the Fourier transform (see equation
2). The observation matrix is usually singular and cannot be
simply inverted. Instead, it is generally the case that non-
linear iterative methods are used to solve this linear equa-
tion. At any one iteration of an iterative deconvolution pro-
cess, we may use the deficit in the normal equation as a
residual or update image:

i
R = AT (d − Ai) (9)

The typical image size (N by N ) for current radio syn-
thesis telescopes ranges between 1,000 by 1,000 to 10,000
by 10,000, and even up to 100,000 by 100,000 for the SKA.
The number of sample points (M) can range from 103 up to
109. Consequently, direct solution of 9 is not feasible. direct
application. Hence we usually adopt a two stage process
in which the matrix AT A is approximated in two different
ways.

To start with, the CLEAN [8] algorithm is used to solve
an approximate convolution equation for the update ∆i

i
R =

(
AT A

)
∆i (10)

In this step, AT A, is approximated by a Toeplitz matrix
with elements far the diagonal set to zero. CLEAN works it-
eratively by finding and removing the brightest point source
in i from the peak in AT (d − Ai). This algorithm is highly
effective for simple objects, but for more complex objects,
CLEAN is less successful, and it has recently been extended
to encompass multi-scale approaches [9]. There remains
much room for improvement in this area.

Given an updated estimate of the image i, we must ap-
ply the product AT A, and also calculate AT D. These steps
also require approximations. For small fields of view, the
usual practice is to use convolutional gridding in conjunc-
tion with an FFT. Thus A is approximated by TF where
F is an N2 Fourier transform, and T is a block diagonal
M by N2 matrix, chosen as a compromise between com-
putational costs (small number of non-zero elements) and
aliasing (large number). Typically, T is constructed from a
tapered prolate spheroidal wavefunction of support 7 by 7
or 9 by 9 elements (See the lecture by Schwab and Bridle in
[10]).

In the case of wide field imaging using W projection, the
observation matrix A is still compased of sines and cosines
(see equation 1). The extra phase term in the transform pre-
vents application of narrow field approximations. Itstead,
the observation matrix is approximated by RTF where R is
an M by N2 matrix representing W projection. In practice,
multiplication by RT is accomplished using a precalculated
tabulation of the Fourier transform of G(�, m, w) multiplied
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by the appropriate spheroidal function. Calculation of both
the predicted data Ai, and the residual image AT (d − Ai)
is then straightforward.

Most of the computational cost occurs in the application
of RT and its transpose, and is directly determined by the
number of visibility samples and the size of the convolution
kernel. Taking the field of view to be λ/D, we find that the
number of pixels in the support region along each of the the
u and v axes goes as Bλ/D2.

The costs for the standard facet based gridding [3] go as
the total number of facets (i.e. the product of the number
along each of the two spatial axes). We then have that the
costs per sample go as:

tfacets = N2
facets.N

2
T .tsingle (11)

twproject = 2(N2
wproject + N2

T ).tsingle (12)

In this equation, NT is the support of the normal grid-
ding convolution function T in one axis (typically 9), and
tsingle is the time to grid a single sample to a single grid
point. Nfacets (the number of facets in one axis) and Nwproject

(the typical size of the R blocks) are both proportional to
B/(λD2) but with different proportionality constants. We
have assumed that the sizes of the T and R add in quadra-
ture. Note also that R is necessarily complex. If we take
Nfacets and Nwproject to be roughly equal, then for large
fields of view, the ratio of these times is roughly the total
number of points in the blocks of T . Since this is typically 7
by 7 or 9 by 9, the asymptotic speedup is between 25 and 50.
Allowing for different proportionality constants, we could
conservatively expect at least an order of magnitude speed
advantage for w projection.

More details of the W projection algorithm are to be
found in [4, 5].

4. A SYNTHETIC EXAMPLE

To demonstrate the w projection algorithm, we simulated a
low frequency (74MHz) observation of a typically full field.
Data corresponding to a 74MHz VLA C-configuration full
synthesis were calculated using analytical transforms, and
should thus be fully accurate to machine precision. The re-
sulting deconvolved images are shown in Figure 1.

The speed difference is substantial : 30488s for the facet
based algorithm compared to 5419s for W projection. If
the algorithms are configured for similar dynamic range, the
difference in speed is usually about an order of magnitude.

5. COMPUTATIONAL COSTS FOR THE SQUARE
KILOMETER ARRAY

Cornwell [11] has recently estimated the computational load
for sensitivity limited full field continuum limited imaging

at 1.4GHz with the Square Kilometer Array [1]. The costs
scale as λB3D−8. A representative computing load to keep
up with real time would be about 150PFlops. Scaling with
Moore’s Law with a doubling time of 18 months, Cornwell
estimates that the dollar cost to be about $500M in 2015 -
about half the target cost of the SKA. Without W projection,
the costs would be about ten times as much.

Highly efficient parallelization is already assumed in this
estimate, and there remains much work to be done in this re-
spect. How then can we make further improvements? There
are many options. Increasing the antenna diameter helps im-
mensely but increases the antenna construction costs. Lons-
dale et al. [12] advocate strong averaging of the data to
limit the field of view, but they note that this probably has
bad effects on the various self-calibration schemes likely to
be used.

One promising computational strategy is to deploy W
projection (and other related algorithms) onto reconfigurable
computers. Compton and Hauck [13] provide an excel-
lent overview of reconfigurable computers. The term ”Re-
configurable Computing” is very broad and accomodates
many different types of architecture and strategies. From
our point of view, the most important is to augment tradi-
tional microprocessors with reconfigurable computational
elements such as Fully Programmable Gate Arrays. The
microprocessor does the general computing, and the FPGA
is configured for special purpose operations to be executed
within a few clock cycles. The gain in speed depends on
the mix of operations but it seems likely that W projec-
tion is well suited to such an architecture. The convolution
step would be implemented in the FPGA, thus returning the
load roughly to that expected for coplanar arrays. Comput-
ers with this architecture are now coming to market (e.g.
Cray XD1.) It thus seems plausible that with this approach,
the costs could be reduced by up to an order of magnitude.
The key advantage of W projection in this regard is that the
global aberration, the non-coplanar baselines effect, can be
countered by local operations in the Fourier space. As such,
it provides a valuable model for the ongoing development of
fast imaging algorithms to deal with other wide field effects
[14].
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Standard Fourier Transform

Facet-based algorithm (9 x 9)

w projection (128)

Fig. 1. Clean images for a VLA 74MHz simulation. The
brightness range is -5 to +50 mJy/beam, and the peak bright-
ness should be 47.2Jy. The peak sidelobes around the
brightest sources in the uvw-space facets image are about
0.3%. Calculation of these images took 784s, 30488s, and
5419s respectively.
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