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ABSTRACT

In vivo optical molecular imaging involves the use of light
emitting tracers combined with sophisticated sensing modal-
ities to perform in vivo imaging of genetic and molecular
information. In contrast to the classical diagnostic imaging
tools which image the end effects of the diseases, optical
molecular imaging could enhance our knowledge of biolog-
ical phenomena, monitor genetic expression and the alter-
ation of cells, and lead to earlier detection of diseases. With
the development of exotic molecular probes with easily de-
tectable bioluminescence and fluorescence labels, optical
molecular imaging has emerged as an important new field
within biomedical imaging. This paper reviews this state-
of-the-art imaging technology and signal processing issues
to monitor molecular and cellular events in living organism.

1. INTRODUCTION

The goal of molecular imaging is monitoring biological pro-
cesses at the cellular and molecular level in vivo. Unlike
conventional anatomical imaging modalities, molecular imag-
ing visualizes the cellular and molecular pathways and in
vivo mechanisms of disease. Such molecular changes oc-
cur in disease much earlier before a mass becomes visible,
hence molecular imaging can be used for early treatment of
cancers, significantly reducing the mortality rate. Due to the
promising outlook of molecular imaging, major diagnostic
imaging companies such as GE, Siemens and Philips have
made commitments to molecular imaging even at this early
stage in its development.

Molecular imaging is a multidisciplinary field. The re-
cent emergence of molecular imaging is largely due to the
unprecedent advances in molecular biology, the availabil-
ity of exotic probes, and the successful development of new
types of small animal imaging devices and sophisticated re-
construction algorithms. In molecular imaging, once a spe-
cific imaging target is defined, a ligand with high affinity to
the target should be found. This can be antibodies, or re-
combination proteins. Depending on the imaging modality,

a contrast agent or label should be found that binds to the
ligand.

Currently, the term “molecular imaging” has been used
to refer to various scales of in vivo bio-medical imaging. For
the biologist, molecular imaging may be synonymous to in
vivo cell imaging using fluorescence microscopy, where ex-
otic fluorescence probes are used to monitor the cell cycle,
signal pathways, gene expressions, nuclear trafficking, etc.
One of the main applications of cell level molecular imag-
ing is high content screening (HCS) to accelerate the drug
discovery process. For the radiologist, the term “molec-
ular imaging” implies whole body imaging using existing
imaging modalities such as positron emission tomography
(PET), magnetic resonance imaging (MR), optical imag-
ing, etc. This group is primarily interested in reporter gene
imaging which can be used for cell marking, gene ther-
apy imaging, transgenic animal imaging, molecular inter-
actions, etc.

Specialized optical imaging devices for small animal
imaging have been developed recently. These have used ei-
ther bioluminescence or fluorescence imaging techniques to
monitor whole body, providing low cost and the versatility
of optical spectroscopy.

In this paper, we discuss the common link between cell
level and whole body level optical molecular imaging. Our
focus is more on the imaging system and signal processing
issues for optical molecular imaging than molecular probe
design problems that have been extensively reviewed else-
where [1].

2. GENERATION OF LIGHT

Bio-luminescence is the ability of living organ to emit light.
Depending on its origin, it is called either chemilumines-
cence (or bioluminescence in a narrow sense) or fluores-
cence. An example of chemiluminescence is generated by
the firefly luciferase, which produces light through oxida-
tion of luciferin. In mammalian species, the luciferase gene
does not exist, so it should be transfected by genetic engi-
neering. The luciferase gene then works as a marker gene
for gene expression. Since there is no background signal, it
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can be used to detect much lower levels of light with a rela-
tively simple detection system [2]. This simplicity and high
sensitivity of a bioluminescence system has been the major
contributor in the success of the start-up company Xenogen.
However, since luciferase requires genetic transfection, it is
not possible to use for an application in human studies.

Fluorescence is a process in which molecules absorb
light and emit light of a longer wavelength after a brief inter-
val. In principle, fluorescence is the result of a three-stage
process. In the first stage, an excitation photon of energy
hνEX is absorbed by a fluorophore, where h is Planck’s
constant and ν is frequency, elevating charge from the ground
to the excited state. The fluorophore then relaxes to the low-
est vibrational energy level of the first excited state, and then
the excited fluorophore returns to the ground state with a
characteristic time constant, resulting in emission of a pho-
ton with longer wavelength and energy hνEM .

Several parameters are important in describing the flu-
orescence phenomena, such as Stoke shift and fluorescence
life time. The Stoke shift is defined as the energy or fre-
quency difference between the excitation and emission pho-
tons, and a larger Stoke shift gives a greater detection accu-
racy. The fluorescence lifetime τ denotes the characteristic
time that a molecule remains in an excited state before re-
turning to the ground state. The lifetime is an important
characteristic of the fluorophore and can be used to distin-
guish between fluorophores with similar spectral character-
istics or signals from the background auto-fluorescence.

3. OPTICAL MOLECULAR PROBES
Fluorescence imaging agents have been extensively studied
for biological applications. For cell biology, fluorescent in-
dicators currently exist for calcium, pH, ATP, membrane po-
tential, and several neurotransmitters [3]. Recently a new
type of naturally fluorescent protein such as green fluores-
cence protein (GFP), obtained from jellyfish Aequorea vic-
toria, and its two spectral variations, have been widely used
for in vivo imaging of cells [3]. Indocyanine green (ICG) is
another useful fluorophore with near-infrared (NIR) range
emission. The relatively low absorption and scatter of liv-
ing tissue in the near-infrared (NIR) region of the electro-
magnetic spectrum makes near-infrared fluorescence probes
such as ICG important for in vivo imaging. Furthermore,
such an imaging agent can be coupled to antibodies or pro-
teins and targeted specifically to tumor cells. Another im-
provement of imaging probes is the advance of “smart probes”
that can only be detected once they have interacted with
their substrate [1].

Recently, inorganic nano-particles or fluorescent semi-
conductor nanocrystals (quantum dots), have attracted much
attention from the biomedical imaging community as a po-
tentially powerful contrast agent [4]. Important properties
of quantum dots (QDs) include broadband absorption spec-
tra and a relatively narrow emission band, which is ideal for

imaging applications.

4. MOLECULAR CELL IMAGING
4.1. Detection System

The popular detection mechanism for cell imaging is laser
scanning confocal microscopy (LSCM). When fluorescent
specimens are imaged using a conventional wide-field opti-
cal microscope, out-of-focus plane fluorescence emitted by
the specimen often interferes with the features in the region
of interests, which reduces the spatial resolution of the mi-
croscope images. In a confocal microscope, the unwanted
out-of-focal plane light is removed with the aperture near
the detector. Unlike a conventional widefield microscope in
which the entire specimen is illuminated by the light source,
in confocal microcopy the illumination is focused only in a
small section of the specimen. This increases the scan time
for a specimen, relative to a wide field microscope. In order
to achieve a fast scan, disk scanning confocal microscope
(or Nipkow disk system) employs a spinning disk with mul-
tiple small holes between the light source and specimen.

Multiphoton (usually two photon) confocal microscopy
is based on nonlinear two photon excitation [5], which oc-
curs by the simultaneous absorption of two photons each
having half the energy required for fluorescence excitation.
Since efficient two-photon excitation requires a high spatial
and temporal concentration of photons, it results in a confo-
cal effect at the focal spot without using any means such as
a pinhole. Furthermore, low energy NIR excitation can be
used to penetrate deeply within the specimen.

4.2. Signal Processing Issues
With ever increasing computational power, algorithmic ap-
proaches have been investigated to replace confocal microscopy.
In so called “computational sectioning”, multiple cell im-
ages are taken using different foci [6] or views [7]. Then,
using deconvolution techniques or computed tomography
algorithms, three dimensional images can be obtained. An-
other promising approach is using a structured light illu-
mination pattern to minimize the out-of-focus interferences
[8].

Another important signal processing issue is signal sep-
aration. For example, biologists often introduce two or more
probes to simultaneously monitor different biochemical pro-
cesses, resulting in overlapped emission spectra. Further-
more, many important fluorescence proteins have excitation
and emission curves that closely overlap each other, hence
the classic bandpass filter approaches does not work effec-
tively. In fact, a similar multi-spectral imaging problem has
been widely studied for geological remote sensing applica-
tions, in which the problem can be basically reduced to a
classifier design problem. If the reference spectra are not
known, sophisticated classification algorithms such as prin-
cipal component analysis (PCA), independent component
analysis (ICA) and k-mean clustring can be used for spectral
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separation [9]. However, if reference spectra are available,
much simpler linear algorithm can be used. For example,
for fluorescence proteins such as CFP, GFP, and YFP , the
measured spectrum S(x, y; λ) at the spatial location (x, y)
can be represented by

S(x, y; λ) = w1(x, y)CFP (λ) + w2(x, y)GFP (λ)
+w3(x, y)Y FP (λ) (1)

where CFP (λ), GFP (λ) and Y FP (λ) denote the spec-
tra of CFP, GFP, and YFP, respectively; and wi(x, y), i =
1, · · · , 3 denotes the corresponding weights. The signal
separation problem is then estimating wi(x, y), i = 1, · · · , 3
using (1).

5. IN VIVO SMALL ANIMAL IMAGING
5.1. Diffusion Approximation

Optical diffusion tomography (ODT) is a sensitive and rela-
tively low cost imaging modality that has been studied quite
extensively to the preclinical stage[2, 10]. A major diffi-
culty with optical imaging is that the signal within tissue
experiences significant scatter. However, use of a forward
model that describes scatter and absorption can form the
basis of an image. In highly scattering media such as tis-
sue, the photon attenuation does not follow Beers-Lambert
law (exponential decay with distance). With sufficient scat-
ter, the photons can be treated as particles which elastically
scatter through the random medium. The theoretical frame-
work for this model is Boltzmann transport theory. If scat-
ter dominates absorption, which is true for soft tissue in the
650-1300 nm range, the Boltzmann transport equation can
be approximated using the diffusion equation. More specif-
ically, the photon flux ψ(r, t) at r ∈ R

3 satisfies

1
c

∂

∂t
ψ(r, t)−∇·(D(r)∇ψ(r, t))+µa(r)ψ(r, t) = −s(r, t) ,

(2)
where s(r, t) is the time varying photon source density, and
the diffusion constant is given by D(r) = 1/3(µa(r) + µ′

s(r)),
with µa(r) the absorption coefficient and µ′

s(r) the reduced
scattering coefficient. In bioluminescence imaging using lu-
ciferase, the imaging objective is to find the source distribu-
tion s(r, t) from the flux measurement ψ(r, t) at the detec-
tor locations. With fluorescence, the situation is more com-
plicated since the excitation and emission spectra are not
identical and the optical parameters µa and µ′

s are wave-
length dependent. Hence, the emission photon flux enve-
lope ψm(r, t) from the excited fluorophore should be cal-
culated again by another diffusion equation using (2) with
the different optical parameters µam and µ′

sm
[11]. Here,

the equivalent source term s(r, t) should come from the flu-
orophore distribution, given by

s(r, t) = ψ(r, t)ηµaf
(r)e−t/τ(r) (3)

where ψ(r, t) is the excitation photon flux, ηµaf
is the ef-

fective quantum yield after absorption, and τ denotes the
fluorescence lifetime. For fluorescence molecular imaging,
the imaging objective is to find the distribution of s(r, t) and
its intensity. For lifetime imaging, we are also interested in
reconstruction of τ(r).

5.2. Signal Processing Issues
Currently, there are several ODT implementations, continu-
ous wave (CW), time domain (TD) [12] and frequency do-
main approaches [10]. Each has merits, as we discuss.

In continuous wave approaches, unmodulated light is
illuminated over the phantom, resulting in time-invariant
photon distribution (hence, ∂/∂tψ(r, t) = 0 in (2)). Since
bioluminescence emission is relatively slowly varying with
time after the injection of luciferin, it can be modeled using
the CW approach. The problem can be reduced to a sim-
ple linear inverse problem under some assumptions. More
specifically, if all the optical parameters µa(r) and D(r) are
known, the spatially varying photon flux at detector location
r is given by

φ(r) =
∫

g(r, r′)s(r′)dr (4)

where g(r, r′) denotes the known Green’s function for (2),
and s(r′) is the unknown source magnitude at r′ (whether
it comes from bioluminescence or fluorescence). Note that
in (4), the Green’s function corresponds to a blurring ker-
nel or point spread function (PSF). Therefore, the prob-
lem of estimating the source s(r, t) becomes a relatively
simple deconvolution problem. Xenogen’s successful IVIS
system is built on an assumption that the Green’s function
g(r, r′) = δ(r − r′). Recently, more sophisticated decon-
volution approaches have been proposed, by explicitly cal-
culating the Green’s function using (2) with the help of an
computed tomography [13], or blindly estimate the source
distribution without knowing the PSF [14]. Note that in CW
approaches the fluorescence lifetime information τ(r) in (3)
disappears because of time integration.

The time-domain approach uses an short laser pulse, and
the emitted fluorescence signals are detected using, for ex-
ample, a PMT to obtain the temporal point spread function
(TPSF). Using the time-domain diffusion equation (2) with
(3), we can reconstruct the absorption and scattering pa-
rameters for the tissue, as well as the fluorophore distribu-
tion and lifetime parameters. One commercial implementa-
tion of the time-domain approach is by Advanced Research
Technologies Inc., who signed contract with GE Healthcare
for the exclusive distribution of systems.

In the frequency domain approach, with a single mod-
ulation frequency, a complex flux is measured. Usually, a
NIR laser is modulated at angular frequency ω, and a pho-
todiode or PMT can be used with heterodyne detection tech-
nique to obtain the phase and intensity from the photon flux
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modulation envelope. CCD implementation of the detector
can also be accomplished by modulating an image inten-
sifier, providing homodyne or heterodyne detection of the
modulated photon flux. Then, the fluorescence parameters
can be obtained using frequency domain version of (2) and
(3).

The most rigorous inversion approach for time or fre-
quency domain approaches use iterative reconstruction al-
gorithms. For example, maximum a posteriori (MAP) es-
timation in a Bayesian framework has been very success-
ful for frequency domain imaging, where shot noise detec-
tion statistics and a priori information were incorporated
[15, 11]. In order to accelerate the computation time, more
sophisticated and powerful algorithms such as multigrid ap-
proaches have been used [15, 16].

6. CONCLUSIONS
Molecular imaging allows monitoring of gene expression
and the alteration of cells, providing the potential for earlier
detection of disease. The two principal components are the
molecular probe and the imaging system. Molecular probes
are designed by incorporating detectable labels into a ligand
with high affinity to the target. Imaging modalities are then
designed to detect the label with high sensitivity and res-
olution. Molecular imaging activities encompasses both in
vivo cell imaging and whole body imaging. Optical imaging
has attracted extensive research attention because it not only
provides a link between the two levels of imaging, but also
permits spectroscopic information in a safe and inexpen-
sive instrument. With the advance of new types of optical
probes and breakthroughs in inversion algorithms, in vivo
optical molecular imaging has great potential to become a
key imaging tool for the early detection of cancer.
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