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ABSTRACT

3-D reconstruction of the electron scattering intensity of a
virus from cryo electron microscopy is essentially a 3-D
tomography problem in which the orientation of the 2-D
projections is unknown. Many biological problems concern
mixtures of different types of virus particles or mixtures of
different maturation states of the same type of virus parti-
cle. For a variety of reasons, especially low SNR, it can
be very challenging to label the type or state shown in an
individual image. Algorithms capable of computing mul-
tiple reconstructions, one for each type or state, based on
images which are not labeled according to type or state, are
described and demonstrated on experimental images.

1. INTRODUCTION

We describe the basic approach and recent computational
results concerning the computation of the 3-D scattering
density of virus particles from 2-D cryo electron microscope
(cryo-EM) images. The basic approach is documented in
detail in Ref. [1] and initial numerical results on experimen-
tal images are documented in detail in Ref. [2]. The contri-
bution of this paper is additional numerical results demon-
strating the computation of multiple 3-D reconstructions from
unlabeled mixtures of particle images.

Each cryo-EM image is a 2-D projection of the 3-D scat-
tering density modified by the so-called contrast transfer
function (CTF) of the microscope. Two central problems
in cryo-EM imaging are the unknown projection orientation
and the sensitivity of the specimen to the electron beam.
Because the orientation of the 3-D specimen on the stage
of the microscope is not known, it follows that the image
is related to an unknown-orientation 2-D projection of the
3-D specimen. This would not be a problem if the micro-
scopist could rotate the 3-D specimen and take a series of
images with known relative orientation, which is essentially
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what is done in medical imaging. However, this approach is
not possible because the 3-D specimen is rapidly damaged
by the electron beam (and also due to technical problems
with the range of achievable rotation). Therefore, taking
multiple images of one 3-D specimen in different orienta-
tions is replaced by taking one image (or a very few images
called a tilt series) of each of many identical 3-D specimens
where each specimen is in a different random unknown ori-
entation. The collection of images from random unknown
orientations is a less informative data set exactly because of
the unknown orientations. In addition, because the speci-
men is sensitive to damage by the electron beam, it is desir-
able to keep the beam current low which leads to very noisy
images with as few as 5 or 6 electrons contributing to a par-
ticular pixel though more commonly higher beam currents
are used which lead to roughly 102 electrons contributing to
a typical pixel. Finally, the CTF of the microscope is never
known exactly but is of great importance when computing
high spatial resolution structures because in the spatial fre-
quency domain it has multiple zeros and sign reversals at
higher frequencies.

Reconstruction methods for cryo-EM images have been
extensively studied. From the structural biology point of
view, recent special issues of the Journal of Structural Biol-
ogy include Refs. [3, 4, 5] and recent reviews include Refs. [6,
7]. In the engineering literature, new results and an exten-
sive literature review on estimation of projection orienta-
tions are contained in Ref. [8, 9, 10]. In particular, Refs. [9,
10] describe new methods of projection orientation estima-
tion based on moments and new results on uniqueness of
reconstruction. High performance computing implementa-
tions are described in Refs. [11, 12, 13]. Once the projec-
tion orientations are determined, the reconstruction problem
is large (since it is in 3-D) but tractable. Two important
and highly-developed approaches for determining the pro-
jection orientations are methods based on the symmetry of
the particle (so-called “common lines” methods) and meth-
ods based on correlation with a model. Broad classes of
virus particles have 3-D scattering densities with rotational
symmetries. Therefore the 3-D Fourier transforms of the
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scattering densities also have rotational symmetries. Due
to the 3-D projection slice theorem, the 2-D Fourier trans-
form of a projection is a 2-D slice through the 3-D Fourier
transform of the scattering density where the slice includes
the origin. The rotational symmetries of the 3-D Fourier
transform of the scattering density appear in the 2-D Fourier
transform of the projection as radially directed lines along
which the variation of the function is identical. By locat-
ing the number and position of such lines it is possible to
determine the projection orientation. A major problem is
the noise in the images. Sophisticated methods are used to
address this issue such as using pattern recognition ideas to
collect sets of images with similar projection orientations
followed by averaging of the images to increase signal to
noise ratio and then estimation of the projection orienta-
tion in the averaged image. A second important approach
to determining projection orientation is based on models. In
many biological investigations there is some idea of how the
virus under investigation is structured, for instance, it may
be related to a second virus with known structure. There-
fore it is often possible to propose a 3-D structure, typically
at low spatial resolution, which can be used as a template in
a 3-D correlation calculation to determine which projection
orientation for the template best matches the observed im-
age. Both common-lines and model-based correlation pro-
cedures are then embedded in larger iterative algorithms in
which projection orientation estimation alternates with re-
construction and the resolution of the orientation estimates
and reconstructions is slowly increased from iteration to it-
eration.

We have developed an integrated statistical approach to
both reconstruction and evaluation of alternative experimen-
tal designs that addresses the issues raised in the first para-
graph. This approach is based on models of the entire image
formation process:

The model of the particle emphasizes the symmetry and
support in 3-D of the scattering density of the particle. While
the scattering density is always positive, we do not empha-
size that constraint because what is actually imaged is the
difference between the scattering intensity of the particle
and the scattering intensity of the vitreous ice in which the
particle is embedded. A simple a priori statistical model for
the particle is included which can also be interpreted as a
regularization term.

The model for the specimen is that the specimen is com-
posed of mixtures of different types of particles where the
number of types is known and all particles of a particular
type are identical. For details of the experiment please see
Refs. [6, 7]. We consider two different statistical descrip-
tions of the uncertainty in particle type. The result of the
reconstruction is a separate model for each type of particle.

A key feature of the specimen is the random orienta-
tion of the particles in the frozen specimen. We consider an

Fig. 1. Examples of the boxed Flockhouse virus [24] im-
ages. All panels use the same intensity scale.

extensive set of models of orientation: No preferred orienta-
tion, a precise preferred orientation, and a preferred orienta-
tion with wobble. For particles with a preferred orientation,
we consider two types of preference.

The model for the image formation process is standard.
It includes an unknown origin location in the images and a
CTF that is not unity.

The image recording process is modeled as the addi-
tion of additive white Gaussian noise to the true image.
At least for the corruption due to electron counting statis-
tics, a Poisson model is more accurate. However, there are
both algorithmic and modeling advantages to a Gaussian
model. Such approaches are also discussed in, for exam-
ple, Refs [14, 15].

In addition to the previously described features, we con-
sider tilt series containing an arbitrary number of images
with arbitrary relative projection orientations.

Our approach is to formulate a statistical description of
the data that includes measurement uncertainty, orientation
uncertainty, and type-of-particle uncertainty. We then solve
a maximum likelihood estimation problem for the structure
of each type of particle. In this paper we solve the like-
lihood equations using the expectation-maximization (EM)
algorithm [16, p. 459] but other methods could also be con-
sidered. From the point of view of reconstruction proce-
dures, the novel aspects of this work are the detailed statis-
tical models of orientation, the attempt to deal simultane-
ously with orientation and reconstruction, and the ability to
work with images that come from a mixture of particles of
different types. While it is not the subject of this paper [1],
we have used the same models to develop a methodology
for evaluating alternative experimental protocols based on
Cramer-Rao bounds [17, 18, 19].

2. IMAGE PROCESSING AND NUMERICAL
RESULTS

The contribution of this paper is that we have developed new
image pre-processing tools that have enabled these algo-
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(a) (b)

Fig. 2. 3-D reconstructions of Cowpea Chlorotic Mottle
Virus from Step 4 of Ref. [2]. (a) Reconstruction of the
T = 1 (dimer) structure from 488 mixture images with prior
probability 0.41. (b) Reconstruction of the T = 3 structure
from 488 mixture images with prior probability 0.59.

rithms to successfully simultaneously compute multiple 3-
D reconstructions from unlabeled mixtures of images. The
images, e.g., Figure 1, have low SNR, the particle is not in
the center of the image, and in some cases there is additional
material in the image. The image pre-processing primarily
deals with the second and third images.

In theory, non-centered particles are not a problem be-
cause the origin location can be treated as a nuisance param-
eter in the software of Ref. [2]. However, treating them as
nuisance parameters leads to increased computational bur-
den. Furthermore, in the existing software, the probability
density function for the nuisance parameters is the same for
all images. Therefore, no advantage can be gotten from the
fact that a particular image is known to be well centered. In
a qualitative sense, pre-processing to center the particle in
the image is equivalent to changing from treating the ori-
gin location as a nuisance parameter to treating the origin
location as a parameter to be estimated. However, it is a
much simplier algorithm than treating the origin location as
a parameter to be estimated in a, for example, maximum
likelihood approach. We center a particle in an image by
minimizing the l2 correlation of the image with an annular
template whose diameters are determined by the radii used
to define the radial basis functions in the orthonormal ex-
pansion of the electron scattering intensity.

The algorithms of Ref. [1, 2] process the Fourier trans-
form of the image not the image itself. We have approxi-
mated the Fourier transform by the DFT which we compute
by the FFT. This approach implies that if there is a non-virus
object within the image then the Fourier transform is inaccu-
rately computed. For this reason, once the particle has been
centered in the image, the image is masked to remove any-
thing outside of the particle. This masking operation would
be difficult to perform if the origin location was treated as a
nuisance parameter.

Various variants of Cowpea Chlorotic Mottle Virus [20]
can assembly in to a variety of types of particles, e.g., quasi
T = 3 symmetry particles, which are the native state, and
quasi T = 1 dimer symmetry particles. These particles dif-
fer in average radius. In work in submission, Dr. Jinghua
Tang et al. have collected images of mixtures of the dif-
ferent types of particles and, by hand labeling of each im-
age, determined multiple 3-D reconstructions using the Spi-
der/Web system [21].

By extending the centering operation to include corre-
lation with different diameter templates, we have automat-
ically extracted subsets of the images based on radius and
have created two-component mixtures. Surface renderings
of some of the resulting reconstructions are shown in Fig-
ure 2. The visual correspondence with some of the submit-
ted work of Dr. Jinghua Tang et al. is excellent. Quantitative
correlation, e.g., the Fourier Shell Correlation function [22,
Eq. 2] [23, Eq. 17] [7, p. 879] is underway.
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