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ABSTRACT

We consider the use of multiple transmit and receive anten-
nas (MIMO) in a wideband code-division multiple-access
system with space–time coding. Using large-system asymp-
totic analyses, we examine the performance of linear re-
ceivers whereby multiuser detection and MIMO decoding
are kept separate.

1. INTRODUCTION

The application of multiple antennas to multiple-access sys-
tems has been recently advocated (see, e.g., [3] and refer-
ences therein). In this paper, we examine the performance
of linear receivers in the uplink of a cellular system using
wideband code-division multiple-access (CDMA) and mul-
tiple transmit and receive antennas with space–time coding.
Specifically, we assume that a multiple-antenna subsystem
is added to an already existing multiple-access system, so
that the received signal is processed by two separate inter-
faces, one mitigating or suppressing the spatial interference
and the other mitigating or suppressing the multiple-access
interference. The performance of some among the possi-
ble two-stage receivers is compared to that of the single-
stage receiver, designed to cope with both interferences at
the same time, but requiring the whole receiver to be re-
designed. We use large-system analyses, based on the as-
sumptions that the spreading sequences are random and in-
dependent across transmit antennas, that the received sig-
nal is symbol-synchronous across users, that the receiver
(the base station) has perfect channel-state information, and
that the number of antennas as well as the number of users
grow to infinity. Comparisons are based on the pairwise er-
ror probabilities (PEP) of the receivers, and, in particular,
on the power loss caused by suboptimum processing of the
received signal.

2. CHANNEL MODEL

In our channel model, K (mobile) users transmit to a single
(base station) receiver. Each user transmits over tk (k =
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1, . . . , K) antennas, and the receiver is provided with r an-
tennas. The total number of transmit antennas is t �

∑K
k=1 tk,

and we define the average number of transmit antennas t̄ �

t/K . To allow multiple access, direct-sequence CDMA is
used, and all transmit antennas are assigned different spread-
ing sequences, whose common length is S. The spread-
ing sequence of user k and antenna i = 1, . . . , tk is de-
noted by the row-vector sk,i = (sk,i1, . . . , sk,iS) ∈ CS .
Assume also that user k transmits the symbol xk,i on an-
tenna i = 1, . . . , tk, so that the transmitted signal is xk,isk,i.
Transmitted symbols have zero mean and variance Es,k =
E[|xk,i|2]. The communication channel of user k is de-
scribed by the gains from transmit antenna j = 1, . . . , tk to
receive antenna i = 1, . . . , r, collected in the r × tk chan-
nel matrices Hk. The random channel matrices have i.i.d.
entries which are zero-mean circularly symmetric complex
Gaussian (ZMCSCG) random variables with variance 1/r.
Their distribution is denoted by Nc(0, 1/r). The receiver is
affected by additive Gaussian noise represented by the r×S
matrix Z with i.i.d. entries distributed as Nc(0, N0). As a
result of above assumptions, the channel model over one
symbol interval is described by the following matrix equa-
tion:

Y =
K∑

k=1

HkXkSk + Z = HXS + Z . (1)

Here we assume that

� H = (H1, . . . ,HK) � (Hij)
r,t
i,j=1 ∈ Cr×t;

� Xk= diag(xk,i)
tk

i=1 ∈ C
tk×tk ;

� X = diag(X1, . . . ,XK) � diag(x1, . . . , xt) ∈ C
t×t;

� Sk = (sT
k,1, . . . , s

T
k,tk

)T ∈ Ctk×S ;

� S = (ST
1 , . . . ,ST

K)T � (si,j)
t,S
i,j=1 ∈ Ct×S .

Eq. (1) can be expanded in the form

Yij =

t∑
�=1

Hi�s�j x� + Zij .

which shows that (1) can be rewritten so as to have a sin-
gle channel matrix H̃ ∈ CrS×t encompassing the effects
of MIMO channel and spreading sequences. The resulting
channel equation is

y = H̃x + z , (2)
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where, if vec(A) denotes the vector obtained by stacking
the columns of A on top of each other, we have defined
x � vec(X), y � vec(Y), z � vec(Z), and H̃i+(j−1)r,� =
Hi�s�j for i = 1, . . . , r, j = 1, . . . , S, and � = 1, . . . , t.

In the following we assume that the spreading sequences
are randomly generated with i.i.d. complex entries having
constant magnitude and randomphase uniformly distributed
over (0, 2π). Thus, we have E[SS†] = It, where (·)† de-
notes Hermitian conjugation.

The structure of channel equations (1) and (2) suggests
that two different types of linear receivers can be designed:

1. A separate (two-stage) receiver based on (1), and aimed
at mitigating separately the effect of H and S on the
transmitted signal (spatial and multiple-access inter-
ference, respectively).

2. A joint receiver based on (2), and aimed at mitigating
the effect of H̃ on the transmitted signal, i.e., the joint
effect of spatial and multiple-access interference.

3. SEPARATE VS. JOINT RECEIVERS

3.1. Separate receivers

The single-user matched filter (SUMF) is based on the as-
sumption that both spatial and multiple-access interference
can be modeled as independent Gaussian noise. Thus, by
rewriting the channel equation (1) as

Y = H1X1S1 +

K∑
k=2

HkXkSk + Z

and setting user 1 as the reference user, the SUMF receiver
implements the transformation

Y �→ Ŷ � H
†
1YS

†
1 ≈ X1 .

A general linear separate multiuser receiver can also be de-
fined. It operates in two stages. First, it mitigates the spa-
tial interference by processing linearly Y to obtain Ỹ ≈
XS. Next, it mitigates the multiple-access interference by
processing linearly Ỹ to obtain Ŷ ≈ X. The latter matrix
is fed to the decoder.

Specifically, we may have the following interfaces:

1. Decorrelator (or zero-forcing, ZF): 1

Y �→ Ỹ = H+Y = (H†H)−1H†Y.

2. Linear minimum mean-square error (LMMSE) filter:

Y �→ Ỹ = FY

1(·)+ denotes the Moore-Penrose left or right pseudo-inverse.

where F is chosen in order to minimize the mean-
square error (MSE) of the received signal after whitened
matched filtering, namely,

E[‖(Ỹ − XS)S†(SS†)−1/2‖2 | H] . (3)

We have two possible types of linear separate multiuser re-
ceivers: ZF and LMMSE. Their description can be summa-
rized as follows.

Y �→ Ỹ = FhY ≈ XS

Ỹ �→ Ŷ = ỸS+ ≈ X , (4)

where

Fh =

{
(H†H)−1H† (ZF)
(H†H + δsIt)

−1H† (LMMSE)
(5)

and δs � N0/Es.

3.2. Joint receivers

The joint receiver is based on (2). Focusing on linear re-
ceivers, we can represent its operation by the map

Y �→ Ỹ = FjY .

Here we have two receiver structures defined by matrix Fj :

Fj =

{
(H̃†H̃)−1H̃† (ZF)

(H̃†H̃ + δsIt)
−1H̃† (LMMSE)

. (6)

4. RECEIVER PERFORMANCE

We study the performance of the linear separate receivers
by calculating the corresponding pairwise error probabil-
ities (PEPs). We take as a reference the performance of
the maximum-likelihood (ML) receiver with metric ‖Y −
H̃X‖2, whose PEP is given by

P(X → X̂) = Q

( ‖∆‖√
2 N0

)
where ∆ � X − X̂ [2].

4.1. Separate receivers: SUMF

In this case, the receiver metric for the reference user is

µ(X1) � ‖H†
1YS

†
1 − X1‖2 . (7)

For notational convenience, we set

J1 �

K∑
k=2

HkXkSk ,

Z1 � J1 + Z .
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Hence, conditionally on H1 and S1, after some algebra the
PEP can be given the form2

P(X1 → X̂1 | H1,S1)

=Q

⎛⎜⎜⎜⎝
‖∆1‖2 +2 (H†

1H1X1S1S
†
1 − X1,∆1)

+2 (H1∆1S1,J1)√
2 N0 ‖H1∆1S1‖2

⎞⎟⎟⎟⎠(8)

where ∆1 � X1 − X̂1.

4.2. Multiuser separate receivers

In this case the receiver metric is

µ(X) � ‖FhYS+ − X‖2 (9)

where Fh and S+ are functions of H and S only. Hence,
conditionally on the matrices H and S, the PEP is given by

P(X → X̂ | H,S)

= Q

⎛⎝‖∆‖2 + 2 (FhHX− X,∆)√
2 N0 ‖F†

h∆(S+)†‖2

⎞⎠ (10)

where, again, ∆ � X− X̂. For the ZF receiver:

P(X → X̂ | H,S)

= Q

⎛⎝ ‖∆‖2√
2 N0 Tr[(H†H)−1∆(SS†)−1∆†]

⎞⎠(11)

4.3. Joint receivers

We calculate the PEP by assuming the following receiver
metric:

µ(x) � ‖Fjy − x‖2 (12)

where Fj is a function of H̃. Conditionally on H̃, we have

P(x → x̂ | H̃)

= Q

⎛⎝‖δ‖2 + 2 ((FjH̃− It)x, δ)√
2 N0 ‖F†

jδ‖2

⎞⎠ (13)

where δ � x − x̂.

5. ASYMPTOTICS

5.1. t < ∞ and r, S → ∞
We first assume that t < ∞ and r, S → ∞, and we consider
the cases of the separate and joint receiver.

2We denote by (A, B) � ReTr(AB
†) the inner matrix product. No-

tice that (A, A) = ‖A‖2.

5.1.1. Single-user matched filter

In this case, we examine the asymptotic behavior of the PEP
described in eq. (8). Since t1 ≤ t < ∞, we have

H
†
1Hk → δ1kIt1 and S1S

†
1 → It1 ,

where δ1k = 1 for k = 1 and 0 otherwise. Therefore,

P(X1 → X̂1 | H1,S1) → Q

( ‖∆1‖√
2 N0

)
(14)

which shows that the PEP depends only on the code of user
1.

5.1.2. Multiuser separate receivers

In this case, we examine the asymptotic behavior of the PEP
described in eq. (10). Since t < ∞, we have

H†H → It and SS† → It .

Then, from eq. (11), we have for the ZF receiver:

P(X → X̂) → Q

( ‖∆‖√
2 N0

)
.

For the LMMSE receiver, since Fh = (H†H+ δsIt)
−1H†,

we have FhH → (1 + δs)
−1It and FhF

†
h → (1 + δs)

−2It.
Thus, we obtain from (10), under the assumption of constant-
energy code words (so that ‖X̂‖ = ‖X‖):

P(X → X̂) → Q

( ‖∆‖√
2 N0

)
for the LMMSE separate multiuser receiver. Its performance
depends on all users’ codes.

5.1.3. Joint receiver

In this case we can see that H̃†H̃ → It and SS† → It.
Thus,

Fj →
{

H̃† (ZF)

(1 + δs)
−1H̃† (LMMSE)

As a result, we have, assuming again constant-energy code
words:

P(x → x̂) → Q

( ‖∆‖√
2 N0

)
(ZF, MMSE) (15)

We see that, under these asymptotic assumptions, no loss is
incurred by two-stage receivers.

5.2. t, r, S → ∞
In this section we consider the case when the system para-
meters ti (i = 1, . . . , K), r, and S grow to infinity, while
the ratios ti/r and ti/S approach finite constants. More pre-
cisely, we assume that ti (i = 1, . . . , K), r, S → ∞ while
ti/r → αi < 1 and ti/S → βi < 1. For convenience, we
denote α �

∑
i αi and β �

∑
i βi. Our analysis is based

on Free Probability Theory (see, e.g., [2]).
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5.2.1. Single-user matched filter

The numerator and denominator of (10) converge to deter-
ministic limits that can be derived from the following re-
sults:3 t−1

1 (HkXkSk,H1∆1S1) → δ1kt−1
1 (Xk,∆1) and

t−1
1 ‖H1∆1S1‖2 → t−1

1 ‖∆1‖2. Thus, the asymptotic PEP
is

P(X1 → X̂1) → Q

( ‖∆1‖√
2 N0

)
where ∆1 � X1 − X̂1. This shows that the performance
depends only on the code of user 1.

5.2.2. Multiuser separate receiver

Consider first the LMMSE receiver. We have

t−1‖F†
h∆(S+)†‖2 → αs −

√
α2

s − 4 α

2 α
√

α2
s − 4 α

(1−β)−1t−1‖∆‖2

(where αs � 1 + α + δs) and

t−1(FhHX,∆) → αs −
√

α2
s − 4 α

2 α
t−1(X,∆) .

Then, we can write

P(X → X̂) → Q

(
A‖∆‖2 + B(X,∆)√

2 N0‖∆‖2

)
, (16)

where

A =
[ 2 α

√
α2

s − 4 α

αs −
√

α2
s − 4 α

(1 − β)
]1/2

,

and

B =
αs − 2 α − √

α2
s − 4 α

α
A.

In this case we have interaction between the two user stages.
The asymptotic PEP of the ZF separate receiver is obtained
by letting δs → 0. The corresponding coefficients are A =
(1 − α)1/2(1 − β)1/2 and B = 0. Thus, the two receiver
stages do not interact.

5.2.3. Joint receiver

In this case we assume that t, r, S → ∞ with t/(rS) →
α̂. Notice that this asymptotic analysis is not compatible
with the one performed for the two-stage receiver, where
t, r, S → ∞ with t/r → α and t/S → β unless the product
αβ → ∞ with the same order as t.

Consider the LMMSE receiver first. We have

P(X → X̂) → Q

(
A‖δ‖2 + B(x, δ)√

2 N0‖δ‖2

)
, (17)

3
τ(A) � n

−1
Tr(A) for every n × n square matrix A.
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Fig. 1. Performance of the proposed receivers for K =
4, tk = 4, r = 32, S = 32.

where

A =

(
2 α̂

√
α̂2

s − 4 α̂

α̂s −
√

α̂2
s − 4 α̂

)1/2

and

B =
α̂s − 2 α̂ − √

α̂2
s − 4 α̂

α̂
A .

The asymptotic PEP of the ZF separate receiver is obtained
by letting δs → 0. The corresponding coefficients are given
by A = (1 − α̂)1/2 and B = 0. The above suggests that
an approximation to the gain of the joint ZF receiver versus
the separate ZF receiver is given by γ = 1−t/(rS)

(1−t/r)(1−t/S) . It
can be shown that γ > 1 if t < r and t < S, as we assumed
above.

6. CONCLUSIONS

We have examined the performance of linear receivers in the
uplink of a cellular system using CDMA and multiple trans-
mit and receive antennas. The performance of a two-stage
receiver was compared to that of the single-stage receiver.
Large-system analyses were used, based on the assumption
that the guidelines they provide are still useful when the
system parameters take on finite values., as demonstrated
in [1]. An example is shown in Fig. 1.
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