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ABSTRACT

In this contribution, the performance of an uplink CDMA
system with random spreading and multi-cell interference is
analyzed. A useful framework is provided in order to deter-
mine the base station coverage for wireless flat fading chan-
nels with very dense networks (in the number of users per
meter) considering different receiver structures at the base
station, namely the Matched filter, the Wiener filter and the
Optimum filter. Using asymptotic arguments, analytical ex-
pressions of the spectral efficiency are obtained and provide
a simple expression of the network capacity based only on
a few meaningful parameters.

1. INTRODUCTION

In the study of CDMA networks, an important problem con-
cerns the optimal deployment of base stations to cope with
the amount of traffic. Assuming that a base station has only
access to the users within its cell, the gain provided by re-
ducing the cell size is studied. Previous works have already
studied the capacity of an uplink CDMA multi-cell network
with various interference models [1, 2, 3, 4]. For exam-
ple, [1] takes into account only the interference of two ad-
jacent cells in a linear setting, according to Wyner’s model,
while [2] restricts the interference to a portion of the plane.
However, none has taken explicitly into account the cu-
mulative effect from all interfering cells with realistic
path loss models. This contribution analyzes this setting
for three types of receiver structures: Matched filter, Wiener
filter and Optimum filter. In particular, a new approach, al-
ready proposed in the downlink case in [5], is used to model
the network given a uniformly distributed density d (number
of users per meter) of the users as well as certain character-
istics of the fading channel. In order to obtain interpretable
expressions (as well as non truncated expressions for simu-
lations), the problem is analyzed in the asymptotic regime:
very dense networks are considered where the spreading
length N tends to infinity, d tends to infinity but the ratio
d
N → α is constant. The results are mainly based on ran-
dom matrix theory [6, 7]. One of the great features of this
tool is that performance measures such as SINR or spectral
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Fig. 1. Representation of a large scale network.

efficiency have very simple forms in the large system limit,
independent of the particular CDMA code structure. More-
over, the theoretical results were shown to be very accurate
predictions of the system’s behavior in the finite size case
(spreading length N of 256).

This paper is structured as follows: In section 2, the
CDMA cellular model is introduced. In section 3, the SINR
(Signal to Interference plus Noise ratio) expression is de-
rived and an asymptotic analysis of the spectral efficiency
with Matched filter, Wiener filter and optimum filter is pro-
vided. Finally in section 4, discussions as well as numerical
simulations are provided in order to validate our analysis.

2. UPLINK CDMA CELLULAR MODEL

2.1. Cellular Model

We focus our analysis on a one dimensional (1D) network.
This scenario represents for example the case of the deploy-
ment of base stations along a motorway (users i.e. cars move
along the motorway). An infinite length ((2L + 1)a with
L → ∞) base station deployment is considered (see figure
1). The base stations are supposed equidistant with inter-
base station distance a. The spreading length, the number
of users per cell and the load of each cell are respectively
given by N , K = d ∗ a and αa.
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2.2. Uplink CDMA Model

In the following, upper case and lower case boldface sym-
bols will be used for matrices and column vectors, respec-
tively. (.)H will denote hermitian transpose. The abbrevia-
tion a.s. means almost surely. The N × 1 received signal y
at the base station has the form:

y = WPs + W+P+s+ + n (1)

WPs is the useful signal, transmitted by users within the
cell whereas W+P+s+ represents the inter-cell interfer-
ence. W and W+ are respectively N × K and N × 2LK
random spreading matrices, with i.i.d. entries (for example
in { −1√

N
, 1√

N
}). n is an N × 1 Additive White Gaussian

Noise (AWGN) vector with variance σ2. Any user i is de-
termined by his position xi. P and P+ are the power atten-
uation diagonal matrices, respectively of size K × K and
2LK × 2LK . Their general form is:

P = diag
[
h1

√
P (x1), ..., hK

√
P (xK)

]
P+ = diag

[
hK+1

√
P (xK+1), ..., h(2L+1)K

√
P (x(2L+1)K)

]
where {hk}k=1...(2L+1)K and P (x) represent respectively
flat fading and path loss.

2.3. Performance metric

We would like to quantify the number of bits/s/Hz the sys-
tem is able to deliver to all the users given a certain inter-
cell distance. The users are assumed to employ Gaussian
codebooks. Due to invariance by translation, the spectral
efficiency per cell is the same for all cells. Since the net-
work capacity is infinite, the measure of performance in this
case is the number of bits per second per hertz per meter
(bits/s/Hz/m) the system is able to deliver defined by:

γ =
1

NTa
I(s,y) (2)

where T is the chip time (set to 1 in the rest of the paper)
and I(s,y) is the mutual information between the received
signal and the transmitted signal for a given receiver struc-
ture. In this case, the network capacity is a linear scaling
factor of γ.

3. SPECTRAL EFFICIENCY

3.1. Matched Filter

Without loss of generality, let us focus on user 1 and denote:

W =
[
w1|W�

]
, P =

[
h1

√
P (x1)

P�

]
, s =

[
s1

s�

]

where w1 and s1 correspond respectively to the first column
of W and the signal of user 1. The received signal at the
output of the matched filter is given by:

wH
1 y = h1

√
P (x1)s1 + wH

1 W�
+P�

+

[
s�

s+

]
+ wH

1 n

SINR(x1) =
|h1|2 P (x1)

σ2 + wH
1 W�

+P�
+P�

+

H
W�

+

H
w1

where W�
+ =

[
W�|W+

]
and P�

+ =
[
P�

P+

]
. The

spectral efficiency is given by:

γ =
1

Na

K∑
i=1

log2(1 + SINR(xi))

Proposition 1 When N → ∞ and d
N → α, the mean spec-

tral efficiency with i.i.d. random spreading and Matched fil-
ter is:

Eh,P (x) [γ] =
2α

a

∫ +∞

0

∫ a/2

0

log2

(
1 +

tP (x)
σ2 + η

)
p(t)dxdt

where p(t) = P

(
|h|2 = t

)
and

η = 2α

∫ +∞

0

∫ +∞

0

t′p(t′)P (x′)dx′dt′

It is quite straightforward to see that for any decreasing
path loss function P (x), the optimum inter-cell distance is
a = 0.

Proof Let R�
+ = W�

+P�
+P�

+

H
W�

+

H
. It can be shown (see

[7]) that:

1. wH
1 R�

+w1 −−−−→
N→∞

1
N

Trace
(
R�

+

)
a.s.

2. 1
N

Trace
(
R�

+

)
= 1

N

∑(2L+1)K
j=2 |hj |2 P (xj)

The spectral efficiency is therefore given by:

γ =
1

Na

K∑
i=1

log2

⎛
⎝1 +

|hi|2 P (xi)

σ2 + 1
N

∑(2L+1)K
j=1
j �=i

|hj |2 P (xj)

⎞
⎠

3.2. MMSE receiver

Let R� = W�P�P�H
W�H

, R = WPPHWH , R+ =
W+P+PH

+WH
+ , F = R� + σ2I and Rtot = R + R+.

3.2.1. Full knowledge of the covariance interference ma-
trix

The output SINR of the Wiener conditioned on the noise
variance and the covariance matrix of the intra-cell interfer-
ence and inter-cell interference is given by1:

SINR(x1) = |h1|2 P (x1)wH
1 (F + R+)−1w1

1The base station is supposed to have a statistical estimate of the inter-
ference covariance matrix.
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Proposition 2 When N → ∞ and d
N → α, the mean spec-

tral efficiency with i.i.d random spreading and Wiener filter
is:

Eh,P (x) [γ] =

2α

a

∫ +∞

0

∫ a/2

0

log2

(
1 + tP (x)mRtot

(−σ2)
)

p(t)dxdt

where mRtot
(z) is the Stieltjes transform2 of the empirical

distribution function of the eigenvalues of Rtot given by [7]:

mRtot
(z) =

1

2α
∫ +∞
0

∫ +∞
0

tp(t)P (x)dxdt

1+tP (x)mRtot (z)
− z

Proof The proof follows a two step procedure:

1. wH
1 (F+R+)−1w1 −−−−→

N→∞
1
N

Trace
(
(F + R+)−1

)
a.s.

2. 1
N

Trace
(
(F + R+)−1

)
= 1

N

∑N
i=1

1

λRtot
i +σ2

1

N

N∑
i=1

1

λRtot
i + σ2

=

∫
1

λ + σ2

1

N

N∑
i=1

δ(λ − λRtot

i )dλ

→
∫

1

λ + σ2
dFRtot

(λ) = mRtot
(−σ2)

where {λRtot

i }i=1...N are the eigenvalues of Rtot, and FRtot
is

the empirical distribution function of these eigenvalues, i.e. FRtot
(λ)

is the proportion of eigenvalues that are inferior or equal to λ.

3.2.2. Partial knowledge of the covariance interference ma-
trix

The output SINR of the Wiener filter conditioned on the
noise variance and the covariance matrix of the intra-cell
interference (the base station knows the signature sequences
only of the users within the cell) is given by:

SINR(x1) =
|h1|2 P (x1)

(
wH

1 F−1w1

)2

wH
1 F−1w1 + wH

1 F−1R+F−1w1

Contrarily to the full knowledge Wiener filter (where it is
straightforward that a = 0 is the optimum inter-cell dis-
tance), as the cell size increases, the partial Wiener filter re-
duces inter-cell interference at the expense of reduced path
gain. Note also that when a → ∞, the partial Wiener filter
is equivalent to the full knowledge filter.

Proposition 3 When N → ∞ and d
N → α, the mean spec-

tral efficiency with i.i.d. Gaussian random spreading and
Wiener filter is:

Eh,P (x) [γ] =

2α

a

∫ +∞

0

∫ a/2

0

log2

(
1 +

tP (x)mR�
(−σ2)2

mR�(−σ2) + η

)
p(t)dxdt

2The Stieltjes transform m(z) of a distribution G is defined as:
m(z) =

∫
1

λ−z
dG(λ).

where mR�
(z) is the Stieltjes transform of the empirical dis-

tribution function of the eigenvalues of R� given by [7]:

mR�
(z) =

1

2α
∫ +∞
0

∫ a/2

0
tp(t)P (x)dxdt

1+tP (x)mR� (z)
− z

and η = 2α
∫ +∞
0

∫ +∞
a/2

tp(t)P (x)dxdt.

[
−∂mR�

(z)
∂z

]
−σ2

Proof As previously, one shows that:

wH
1 F−1w1 −−−−→

N→∞
1

N
Trace

(
F−1

) → mR�
(−σ2)

wH
1 F−1R+F−1w1 −−−−→

N→∞
1

N
Trace

(
F−2R+

)
a.s.

The derivation of the last term uses specific tools of Free Probabil-
ity Theory [6]. In particular, since R� and R+ are almost surely
asymptotically free, we have:

1

N
Trace

(
F−2R+

) −−−−→
N→∞

1

N
Trace

(
F−2

) 1

N
Trace (R+) a.s.

where

1

N
Trace

(
F−2

)
=

1

N

N∑
i=1

1

(λR� + σ2)2
→

[
−∂mR�

(z)

∂z

]
−σ2

1

N
Trace (R+) =

1

N

(2L+1)K∑
j=K+1

|hj |2 P (xj)

3.3. Optimum receiver

The mutual information between y and s at the output of
the optimum receiver (based only on the knowledge of the
intra-cell signatures) is given by:

I(s,y) = H(y) − H(y/s)

= log2 det(Rtot + σ2I) − log2 det(R+ + σ2I)

Proposition 4 When N → ∞ and d
N → α, the spectral

efficiency with i.i.d. random spreading and optimum filter
is:

γ =
1

a ln(2)

∫ σ2

+∞

(
mRtot

(z) − mR+(z)
)

dz (3)

where mR+(z) is the Stieltjes transform of the empirical
distribution functions of the eigenvalues of R+ given by:

mR+(z) =
1

2α
∫ +∞
0

∫ +∞
a/2

tp(t)P (x)dxdt

1+tP (x)mR+ (z)
− z

Proof Note that

γ =
1

Na

N∑
i=1

log2

(
λRtot

i + σ2
)
− log2

(
λ
R+
i + σ2

)

−−−−→
N→∞

1

a

∫
log2

(
λ + σ2) (

dFRtot
(λ) − dFR+(λ)

)
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where {λRtot

i }i=1...N and {λR+
i }i=1...N are the sets of eigenval-

ues of Rtot and R+, and FRtot
and FR+ are the empirical dis-

tribution functions of the eigenvalues. If we derive this expression
with respect to σ2 we obtain:

∂γ

∂σ2
=

1

a ln 2

(
mRtot (−σ2) − mR+

(−σ2))

where mRtot
(respectively mR+ ) is the Stieltjes transform of FRtot

(resp. FR+).

Note that in the case of no inter-cell interference, the
asymptotic spectral efficiency is given by:

γ =
1

a ln(2)

∫ σ2

+∞

(
mR�

(z) − 1
z

)
dz (4)

4. SIMULATIONS

In the following, we consider two special fading cases.

1. The unfaded case i.e. p(t) = δ(t − 1) (δ is the Dirac
function)

2. The Rayleigh fading case i.e. p(t) = exp(−t).

The path loss is of the polynomial type P (x) = 1/(|x| +
1)β . In figure 2, we have plotted the spectral efficiency of
the matched filter, the Wiener filter and the optimum filter
for β = 2, α = 0.01 and σ2 = 10−7. Contrary to the
case for downlink CDMA studied in [5], spectral efficiency
always decreases with inter-cell distance. One can see that
the fading does not have a great impact as faded and un-
faded curves are very close. Additionally, the curves show
that optimum intra-cell processing can more than double the
spectral efficiency with respect to the use of the matched fil-
ter or the partial knowledge Wiener filter. The relative gap is
even higher for increasing inter-cell distance (in which case
one is in an overloaded cell system). Note also that exploit-
ing the inter-cell interference statistics can greatly improve
the performance of the Wiener filter (close to the optimum
intra-cell processing). In fact, the curve given by equation
(4) (not plotted due to scaling factors) shows that inter-cell
interference reduces spectral efficiency by a factor of 3 for
the range of values of a considered in figure 2.

5. CONCLUSION

Using asymptotic arguments, an explicit expression of the
spectral efficiency of multi-cell networks has been derived
considering realistic path loss and fading models. We have
shown in particular the potential gain in cellular environ-
ments of optimum intra-cell processing with respect to var-
ious receivers. The results are especially useful for the de-
ployment of cellular networks for a given target user rate.
Note that although the model under consideration applies to
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Fig. 2. Results for α = 0.01, P (x) = 1/(|x| + 1)β , β = 2.

1-D networks, it is straightforward to extend the analysis to
2-D networks (in the case of a regular pattern). The effect
of frequency selective fading as well as frequency reuse are
still being studied.
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