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ABSTRACT

We address the problem of code-reference spatial filtering for

multicode DS/CDMA. The large-system analysis of the asymp-

totic performance of three spatial filters, respectively based on the

matched filter, the decorrelator and a projector onto the span of

the codes of the desired user, is presented. We derive analyti-

cal expressions for the asymptotic covariance and output signal-

to-interference-plus-noise ratio (SINR) of these filters, assuming

that both the spreading factor and the number of parallel code se-

quences increase without bound at the same rate. A superior per-

formance of the projecting filter against the other two solutions

is revealed: the performance of the spatial filters based on the

matched filter and the decorrelator saturates both for increasing

values of the input signal-to-noise ratio (SNR), whereas the pro-

jecting solution is able to sustain an increasingly high SINR.

1. INTRODUCTION

It is well known that the presence of multiuser interference consti-

tutes the strongest limiting factor in the spectral efficiency of cur-

rent and future wireless communication systems. In DS/CDMA

systems, multiple antennas at base stations can be used to provide

spatial diversity in order to mitigate multiple access interference

(MAI) by reducing the amount of co-channel interference from

other users within the same cell and neighboring cells, thereby im-

proving the SINR and ultimately increasing the system capacity.

Joint space-time filtering has usually been proposed as a pow-

erful signal processing solution. However, its higher complexity

often precludes its application in standardized wireless systems.

On the other hand, spatial filtering schemes yield architectures that

are compatible with existing time-only processing methods, thus

enabling a straightforward upgrade of current base stations. In

[1], a semi-blind spatial filter for pilot-aided WCDMA is proposed

that efficiently neutralizes the interference due to the training data

transmitted by the user whose symbols are to be recovered. In this

paper, we use a similar approach to analyze the performance of

three different beamforming concepts for multicode DS/CDMA.

The spatial filters considered here operate in a code-reference fash-

ion, i.e. they are designed exploiting the spectral structure of the
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transmitted signal, so that no training information is needed and,

hence, the associated loss of capacity is avoided. Moreover, un-

like multiuser detection techniques (MUD), which rely upon the

knowledge of the spreading sequences of all interfering users, the

proposed filters make only use of the codes of the desired user.

2. SIGNAL MODEL AND SPATIAL FILTERING

Separation of desired signals from unwanted disturbances imping-

ing on an antenna array is a well-studied problem in the signal

processing community. In this paper, we concentrate on methods

that exploit the inherent redundance of the DS/CDMA signal to

design the spatial filters without dedicated training signals or fur-

ther knowledge of the array manifold. The main idea behind code-

reference beamforming is to compare the spatial covariance matrix

before and after a signal-enhancement filtering operation in the

time domain. The main purpose of such a filter is to increase the

signal power of the desired user while mantaining the noise-plus-

interference component at a reasonable level. The spatial filter can

be formulated as the generalized eigenvector associated with the

maximum generalized eigenvalue of the matrix pencil
³
R̂2 R̂1

´
,

where R̂1 and R̂2 denote the sample correlation matrices before

and after the signal-enhancement filter, respectively.

This idea has been widely exploited in the array processing lit-

erature. For example, in [2], the author derives an eigenstructure-

based method applicable to gated signals, either in time or in fre-

quency, that requires no knowledge of the array manifold but needs

from a double eigendecomposition. This problem is solved in

[3] for non-stationary signals by computing only one generalized

eigendecomposition of two covariance matrices estimated in dif-

ferent time instants, assuming that noise and interference signals

are stationary. A similar approach was applied in [4] to DS/CDMA

systems, where the difference of two covariance matrices before

and after despreading is used to obtain the array steering vector of

the desired user. In conventional single-code DS/CDMA systems,

traditional despreading (a filter matched to the user code signa-

ture) seems to be the natural choice for the signal-enhancement

operation. However, since many current standards are based on

multicode DS/CDMA [5], more sophisticated signal enhancement

strategies can be considered for these systems. In the following,

two alternative filtering schemes will be introduced and analyzed.

Consider the uplink of a -user multicode DS/CDMA system

using 1 antenna elements at the base station. The symbols
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of each user are transmitted using different parallel spreading

codes with spreading factor equal to . The bandpass signal re-

ceived by the sensors is simultaneously sampled and downcon-

verted, and a collection of baseband samples is gathered into

a common matrix with complex entriesX C
× . Hence, the

received sample matrix is defined as

X = a1 (C1s1) +
X
=2

a (C s ) +N, (1)

where the columns of C contain the parallel code sequences

of the ith user (linearly independent), to which the symbol stream

s C is to be mapped, and a is its steering vector, both as-

sumed to be unknown. N C
× models the spatial noise

samples at each antenna. Without loss of generality, user 1 is con-
sidered to be the desired user. Throughout this paper, let (·)
denote complex conjugate and transpose.

Now, we define the sample covariance matrix at the input of

the antenna array as

R̂1 =
1
XX . (2)

To recover the symbols of the desired user, the following signal-

enhancement filters are considered: the matched filter (MF), the

decorrelator (DEC) and a third solution based on the orthogonal

projection onto the subspace spanned by the spreading sequences

(PC). The received signal at the array after signal enhancement is

Y = XC1 (3)

Y = XC1

³
C1 C1

´ 1

(4)

Y = XC1

³
C1 C1

´ 1 2

(5)

for each scheme, respectively. Note that the third matrix filter con-

sists of an orthogonal basis for the span of the codes. Thus, the

sample covariance matrix after the signal-enhancement filter can

be similarly expressed as

R̂2 =
1
YY =

1
XC1

³
C1 C1

´
C1 X , (6)

where takes the values 0, 1 and 2 for the matched filter, projec-
tor and decorrelator, respectively. Due to the signal enhancement,

the SINR at the output of the spatial filter will be approximately

proportional to the ratio w R̂2w w R̂1w. Consequently, it

seems reasonable to design ŵ by maximizing this ratio, i.e. as the

generalized eigenvector associated with the maximum generalized

eigenvalue of the matrix pencil
³
R̂2 R̂1

´
.

3. ASYMPTOTIC PERFORMANCE PREDICTION

If an infinite number of samples were available ( ), the

three architectures proposed above would be equivalent to the op-

timum beamformer (i.e. the one maximizing the output SINR).

However, since the spatial filters are in practice designed with sam-

ple covariance matrices, the performance of the three solutions will

be different, and it is a priori difficult to identify the best one. In

order to reveal the behavior in a finite-sample-size situation, our

asymptotic analysis is derived under the assumption that both the

observation window length and the number of parallel spread-

ing sequences grow without bound, whereas the ratio between

them ( = ) remains constant. With this strategy, we ob-
tain results that are more representative of real non-asymptotic sit-

uations because, as in practical scenario, both quantities are as-

sumed to have the same order of magnitude. Results from random

matrix theory [6] and free probability [7] are used to obtain the

asymptotic matrix pencil for each spatial filter as a function of the

moments of the limiting empirical eigenvalue distribution of the

randommatrix
¡
C1 C1

¢
and the parameter associated with each

particular spatial filtering solution.

In our analysis, the asymptotic limits will be derived under the

following statistical assumptions:

(As1) The elements of the noise matrix N are i.i.d. circu-

larly symmetric Gaussian random variables with zero mean and

variance 2.

(As2) The transmitted symbols are modeled as i.i.d. circu-
larly symmetric random variables with zero mean, unit variance

and bounded higher order moments. They are also independent of

the received noise.

(As3) The code sequences are also modeled as i.i.d. circu-
larly symmetric r. v. with zero mean and variance 1 . They are

also independent of the received noise and transmitted symbols.

Proposition 1 (Asymptotic Spatial Filters) Under (As1) - (As3)

and as at the same rate, the three spatial filters

proposed in Section 2 converge in probability to the same limit (up

to a scalar factor), which is given by the generalized eigenvector

associated with the maximum generalized eigenvalue of the matrix

pencil (R2 R1), where

R1 = R +R ,R2 =
+2
R + +1

R (7)

and

R = a1a1 R = A1A1 +
2
I (8)

Here, A1 is the matrix with the steering vectors of the in-

terferers and is defined as the limiting normalized trace
1 tr

h¡
C1 C1

¢ i
.

Proof. See [8] for a proof.

We see from this result that under the asymptotic conditions

considered here, the three proposed beamvectors tend to the same

limit (up to a scalar factor) as at the same rate. The

three solutions are asymptotically proportional to the eigenvector

associated with the maximum eigenvalue of the generalized eigen-

problem (R R ), which is denoted by w . This is, at the same

time, the solution for the beamformer maximizing the SINR at the

output of the antenna array, i.e.

w = argmax
w

w R w

w R w
. (9)

The three proposed designs for the despreading operation yield

then spatial filters that are asymptotically optimal in the sense of

maximizing the SINR. Therefore, from the point of view of the as-

ymptotic solution, there is no difference in performance between

these three implementations. This does not mean, however, that

they are equivalent in a real (non-asymptotic) scenario. The differ-

ence in performance will be given by the difference in the asymp-

totic covariance of the beamvector weights around the optimum

value. A different asymptotic covariance matrix will translate into

a different SINR at the output of the spatial filter. In this paper, we

define the (average) output SINR of a particular beamformer ŵ as

(ŵ) =
E
£
ŵ R ŵ

¤
E [ŵ R ŵ]

=
w R w+tr [R Cŵ]

w R w+tr [R Cŵ]
(10)
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where the expectation in the middle term is taken with respect to

the statistics of the estimate ŵ, w = E [ŵ] is its mean beamvec-

tor and Cŵ = E

h
(ŵ w) (ŵ w)

i
its asymptotic covari-

ance matrix [9]. We prefer to use this performance measure rather

than the expectation of the instantaneous SINR because (10) is

much simpler to compute (only second-order statistics are needed),

whereas both performance measures can be demonstrated to be

very close in practical situations (see ([10]) for further details).

The next proposition gives the asymptotic expression for the

covariance1 of the maximum generalized eigenvalue eigenvector

associated with the matrix pencil
³
R̂2 R̂1

´
.

Proposition 2 (Asymptotic Covariance) Under (As1) - (As3)

and as at the same rate, for almost every realiza-

tion of signature sequences, the covariance matrix of the properly

normalized spatial filters around the optimum value w behaves

as,

Cŵ W1W1 (11)

whereW1 =
£
w2 w

¤
and the parameter can be

generally expressed for the three filters as a function of and ,

defined as the optimum SINR (i.e. the SINR obtained with the op-

timum beamvectorw in (9)),

=
1

( +2 +1)2 2

"
2 +2 (1 + )+

+ 2 +3 (1 + ) 2 +2
³

+2 + +1
´

2 +1
³

+2 + +1
´
+
³

+2 + +1
´2 #

Proof. See [8] for a proof.

The consistency of the sample weights is obvious from (11),

since its covariance goes to zero as
¡

1
¢
. After noting that

W1W1 is identically defined for all three spatial filters, their co-

variance is seen to be proportional to the parameter . Particular-

izing the previous expression to the matched filter and the decor-

relating solutions, we obtain

=
1
·
1 + 2 +

¸
+ (12)

=

µ
1
¶
+
1

. (13)

whereas for the projecting approach we have

=
1

(1 )

·
1 +

¸
(14)

Furthermore, by inserting the covariance matrices into (10),

the average output SINR for each proposed spatial filter in the as-

ymptotic regime are well approximated by [8]

(ŵ ) =
1 + 1 (1 + )

(15)

Note that only for the solution projecting onto the span of the

known spreading codes does the covariance factor vanish as the

1Since the spatial weight vector is defined up to a constant factor, care
must be taken in imposing some amplitude and phase constraints to avoid
ambiguities in the definitions of the weight vector covariance [8].

optimum SINR gets higher. In this limiting situation, the normal-

ized covariance of the other two solutions approaches a floor value

that depends on the parameter . This fact exemplifies the differ-

ent behavior of the projection solution compared to the other two

methods in terms of output SINR. The following behavior of the

different covariance matrices can be inferred from (12) - (14): as

the ratio between the number of parallel codes and the length of

the observation window goes to zero, all expressions become the

same. This is due to the fact that, for a fixed , as the length of the

linearly independent code sequences increases, they become more

and more orthogonal to each other. Analogously, for a fixed , as

the number of parallel codes gets smaller, the contribution to the

interference or degree of correlation between sequences decreases.

4. NUMERICAL VALIDATION

In this section we present a numerical validation via simulations

of the asymptotic study presented in the last section. To demon-

strate the convergence of the covariance matrix to the asymptotic

expression obtained theoretically, we considered a scenario with

five users transmitting from the azimuth angles (in degrees) [10
(desired user), 40, 25, 35, 20 (interfering signals)] and im-
pinging on a uniform linear array of eight elements situated half

a wavelength apart. All the interfering users were received with

a mean power 20 dB above the noise floor. In order to show
the rate of convergence toward the asymptotic expressions de-

rived in the previous section, we steadily increase the value of

and at the same rate. We fixed the two signal parame-

ters and to = 8 and = and let vary from 1
to 64. Figure 1 shows this convergence in terms of the quantity
tr[Cŵ]

kw k2
2

versus for the beamformers under consideration and for

two different values of received desired SNR, which is defined as

SNR = 1
2, namely 0 dB and 10 dB. The covari-

ance results are averaged over 100 realizations of the symbol and
code sequences, which were all randomly drawn from a QPSK

alphabet. We observe that the rate of convergence is quite reason-

able and that the derived asymptotic expressions are very accurate

in practical situations, even for unfavorable values of input SNR.

In Figure 2, asymptotic and simulated output SINR versus in-

put SNR in a realistic scenario are depicted. In this case, the same

scenario as in the previous example is considered, but an antenna

array of only four elements is used to show the filtering proper-

ties of the proposed schemes in a situation with more users than

antenna elements. The simulated points are seen to match very

well the underlying theoretical curves. Furthermore, note that the

simulation results confirm the previously predicted asymptotic be-

havior and consequently expose the differences in the output SINR

between the proposed spatial filters, as identified in Section 3:

the performance of the matched filter and the decorrelator satu-

rates as SINR , whereas the projector is able to benefit

from an increasing input SNR. This indicates that the actual per-

formance of the spatial filters is not only interference-limited, but

also estimation-error limited: the residual uncertainty in the esti-

mation of the beamvector does not vanish for increasing values of

the input SNR. The same phenomenon was also observed in [1] for

a pilot-aided spatial filter for multicode WCDMA, and in [11] in

the context of asymptotic efficiency of blind and group-blind lin-

ear MMSE multiuser receivers. Note that due to this finite sample-

size effect, the output SINR at the output of the projector does not

reach the optimum value, although the loss in output SINR is less

significant.
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Fig. 1. Convergence of the normalized beamvector variance. We

fixed = 8 , = , and is varied from 1 to 64.

It can also be observed from Figure 2 that, for increasing val-

ues of output SINR, the matched filter performs even better than

the decorrelating solution. This can be understood by noting that

the code separation capabilities of the different schemes turn out

to be unimportant for the beamforming operation at hand.

5. CONCLUSIONS

The analysis of the asymptotic performance of three blind spa-

tial filters for multicode DS/CDMA is presented. The three meth-

ods provide the solution for the beamvector in a single eigenvalue

computation, avoiding the use of iterative techniques. We have de-

rived analytical expressions for the asymptotic covariance of the

beamvectors and its output SINR as both the spreading factor and

the number of parallel code sequences increase without bound at

the same rate. The fast convergence properties of the techniques

used for our large-system analysis allow for a good match between

the analytical results and the system performance in realistic non-

asymptotic situations. These results are quite general because they

do not depend on realizations of the signature sequences and little

is assumed regarding other spatio-temporal characteristics of the

received signals. The usual despreading operation based on corre-

lating the received signal with the code of the desired user is shown

to yield a poor output SINR if the finite sample size effect is taken

into consideration. Two other alternative and more sophisticated

signal-enhancement filters have been evaluated: the performance

of the spatial filters built upon the matched filter and the decorre-

lator schemes is seen to saturate for increasing values of the input

SNR, whereas a significant performance gain can be achieved with

a filter projecting onto the span of the codes as this solution is able

to sustain an increasingly high output SINR.
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