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ABSTRACT

In this paper we investigate the performance of block-fading Mul-
tiple Input Multiple Output (MIMO) Ricean correlated channels in
the case where the number of transmit and receive antennas con-
verge to infinity at the same rate. In this context we show that the
expressions of classical performance indices such as the average
mutual information or the output SINRs of MMSE receivers con-
verge to deterministic expressions. The analysis determines the
parameter of interest and gives insight of the effect of the channel
distribution on the performance metrics.

1. INTRODUCTION

Since the seminal work of Telatar ([1]), the performance study
of MIMO systems has generated considerable interest. In par-
ticular, various indices of performance (average mutual informa-
tion, ergodic capacity, output SINRs -signal to noise plus inter-
ference ratios- of MMSE receivers) of block-fading Rayleigh (i.e.
zero-mean) correlated channels have been studied extensively (see
among others [2] to [6]). Despite the fact that the performance
analysis of Ricean (non zero-mean) MIMO channels is of great
practical interest, studied dedicated to this issue have been lim-
ited. The most significant works studied the mutual information
and capacity of Ricean channels with independent identically dis-
tributed (i.i.d.) Rayleigh component (see e.g. [2] and [5] in the
case of rank one line-of-sight (LOS) component, or [7],[8]). How-
ever these works do not discuss important issues such as the im-
pact of the structure of the LOS or Rayleigh component on com-
munications performance metrics. The purpose of this paper is
to study the average mutual information and the output SINR of
the MMSE receivers in block-fading Ricean MIMO channels with
or without correlation on the Rayleigh component. We will only
consider the case with correlation at the receiver. This case cor-
responds to important practical situations such as the downlink of
a cellular system equipped with multiple antenna base and mobile
stations. Moreover, it leads to very useful analytical expressions
that have not been considered in the literature so far. As in [3], [6],
[8] we study the performance indices mentioned above in the case
where the number of transmit and receive antennas converge to
the infinity at the same rate. The main advantage of this approach
follows from the fact that, in this asymptotic regime, the expres-
sions of the performance indices are simple and can be used in
order to get some insights on the influence of the statistical prop-
erties of the channel. We mention that this asymptotic approach
has not been studied in previous works in the context of Ricean

channels (see e.g. the exhaustive monograph [5] in which non
trivial Ricean channels are not considered). This paper is struc-
tured as follows. In section 2 we present the Rice MIMO channel
model. In section 3 we present a useful technical result based on
[9]. This result characterizes the behavior of the diagonal entries
of (ΣΣH + σ2I)−1 where Σ is a non centered random matrix
of increasing dimensions with independent (but non necessarily
identically distributed) entries. The result is then used to derive
approximate expressions of the average mutual information and
MMSE output SINRs. In section 4 we use these expressions in or-
der to study the impact of channel statistics on mutual information
and the (uncoded) bit error rate at the MMSE receiver output. In
particular we identify some propagation conditions under which
the considered performance indices are optimum. Finally we pro-
vide in section 5 some numerical evaluations intended to show that
the asymptotic regime is reached for reasonably small numbers of
antennas and to illustrate some interesting behaviors of correlated
MIMO Ricean channels.

In the following, upper and lower boldface symbols will be
used for matrices and column vectors, respectively.AH stands for
the conjugate transpose of matrix A, Tr(A) for its trace, and the
mathematical expectation operator is denoted by E(.)

2. RICE CHANNEL MODEL

We consider a wireless MIMO link characterized by the following
equation:

ỹ = H̃x + ṽ (1)

where x is the vector of transmitted symbols, ṽ is a white Gaussian
noise distributed as N (0, σ2I), ỹ is the received signal and H̃ is
the channel matrix. For simplicity sake, we will assume that the
number of transmit and receive antennas are equal. We denote this
common value by t. However our results can be extended to the
more general case where the channel matrix is not square. We
model the channel matrix H̃ as

H̃ =

√
K

K + 1
Ã +

√
1

K + 1
W̃ (2)

where Ã is a deterministic matrix representing a line-of-sight com-
ponent normalized in such a way that 1

t
Tr(ÃÃH) = 1. The ma-

trix W̃ represents the Rayleigh part of the channel and is assumed
to be distributed according to the model W̃ = R1/2W̃iid where
W̃iid is an i.i.d. centered complex Gaussian matrix with variance
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1
t

entries and R is a positive Hermitian matrix used to model an-
tenna correlation at the receiver. Additionally this correlation ma-
trix verifies 1

t
Tr(R) = 1. This implies that 1

t
E[Tr(W̃W̃H)] = 1.

The factor K ≥ 0 is the so-called Ricean factor. It expresses the
relative strength of the direct and scattered components of the re-
ceived signal.

Moreover, channel state information is assumed only at the
receiver end. In this case, the covariance matrix of x coincides
with the identity matrix I and as a consequence, the average mu-
tual information per transmit antenna C(σ2) given by C(σ2) =
1
t
E(log det(I+ H̃H̃H

σ2 )). Let R = UDUH be the eigenvalue/eigen-
vector decomposition of the correlation matrix R (note that 1

t
Tr(D)

= 1) and denote by H the matrix H = UHH̃. Then it is easily seen

that H =
√

K
K+1

A +
√

1
K+1

W where A = UHÃ and W =

D
1
2 Wiid. The matrix Wiid is a Gaussian i.i.d. matrix defined

by Wiid = UHW̃iid. Using the unitary invariance of C(σ2) it is

straightforward to see that C(σ2) = E(log det(I+HHH

σ2 )). There-
fore the observation equation given by (1) is strictly equivalent to
the following equation

y = Hx + v, (where v = UHṽ, and y = UHỹ) (3)

in terms of mutual information. This remark is very useful because
the zero-mean component of H has independent (but not identi-
cally distributed) entries. Note that equations (1) and (3) are also
equivalent in terms of output SINR for MMSE receivers where the
SINR βk is defined with respect to the k-th component xk of x.
As a consequence, in all the following, we will restrict ourselves
to the observation model (3).

3. ASYMPTOTICAL PERFORMANCE OF MIMO
SYSTEMS OVER NON ZERO-MEAN CHANNELS

3.1. A preliminary result

As we will see in section 3.2 both mutual information and MMSE
output SINRs are strongly related to the diagonal terms of matrix
(HHH + σ2I)−1. The convergence of the diagonal entries of
the matrix (HHH + σ2I)−1 holds under certain conditions and is
an application of a theorem due to Girko [9]. In [9], Girko stud-
ied the behavior of these terms in the case where the entries Hi,j

of H are non centered and independent (but not identically dis-
tributed) random variables of variance 1

t
d2

i,j , but not necessarily
Gaussian. In our context the term d2

i,j does not depend on the in-
dex j, which can be used to simplify the original results of [9]. We
denote by Q(σ2) and P(σ2) the matrices defined by Q(σ2) =

(HHH + σ2I)−1 and P(σ2) = (I + HHH
σ2 )−1, and denote their

entries by (qi,j(σ
2))(i,j)=1,...,t and (pi,j(σ

2))(i,j)=1,...,t respec-
tively. We assume that supt ‖A‖ < +∞ where ‖A‖ represents
the largest singular value of A (the consequences of this condition
are discussed in the next section). Then, under additional purely
technical assumptions, it is possible to show that the normalized
trace and diagonal entries of Q(σ2) and P(σ2) have the same be-
havior as deterministic quantities given in the following theorem.

Theorem 1 It exists a unique pair
(
m(σ2), δ(σ2)

)
, m(σ2) > 0,

δ(σ2) > 0, satisfying the following system of equations

m = F1(m, δ), δ = F2(m, δ) (4)

where the functions F1 and F2 are given by

F1(m, δ) = 1
t
Tr

[(
σ2(I + mD

K+1
) + K

K+1
AAH

1+ δ
K+1

)−1
]

(5)

F2(m, δ) = 1
t
Tr

[
D

(
σ2

(
I + mD

K+1

)
+ K

K+1
AAH

1+ δ
K+1

)−1
]

. (6)

Denote by Φ(σ2) and Ψ(σ2) the diagonal matrices defined by

Ψ(σ2) =

(
1 +

δ(σ2)

K + 1

)
I (7)

Φ(σ2) = σ2

(
I + m(σ2)

D

K + 1

)
(8)

Then, for each k,

lim
t→+∞

pk,k(σ2) − (Ψ(σ2) +
K

K + 1
AHΦ(σ2)−1A)−1

k,k = 0 (9)

lim
t→+∞

qk,k(σ2) − (Φ(σ2) +
K

K + 1
AΨ(σ2)−1AH)−1

k,k = 0 (10)

and

lim
t→+∞

1

t
Tr(Q(σ2)) − m(σ2) = 0 (11)

3.2. Applying Theorem 1 to the performance analysis of MIMO
systems

In this section we explain more precisely why Theorem 1 is useful
to study the behavior of the average mutual information C(σ2)
and the SINR’s (βk)k=1,...,t. We also establish the connections
between our figures of merit and the matrices Q and P introduced
in 3.1.

3.2.1. Mutual Information Expression

It is well known that the derivative C′(σ2) of C(σ2) with respect
to the parameter σ2 expresses as C′(σ2) = −E( 1

σ2− 1
t
Tr(Q(σ2)).

Using (11) shows that C′(σ2) has the same asymptotic behavior
as 1

σ2 − m(σ2). Therefore

lim
t→+∞ C(σ2) − C(σ2) = 0 where C(σ2) =

∫ +∞

σ2
(

1

ω2
− m(ω2))dω2

(12)

3.2.2. SINR Expression

In order to express the SINR βk, we denote by hk the k-th col-
umn of H and by Hk the matrix obtained from H by remov-
ing the column hk. It is well known that βk = hH

k (HkH
H
k +

σ2I)−1hk. Using straightforward algebra βk can also be written
as βk = 1

pk,k(σ2)
− 1. The multiuser interference at the output of

the MMSE receiver is usually modelled by a Gaussian distributed
process. As a consequence, the (uncoded) bit error rate at the out-
put of the t MMSE receivers (one for each component of x) can
be derived and is equal to Pe = 1

t

∑t
k=1 Q(

√
βk) in the case of

a 4 − QAM modulation for example (Q is the classical Gaussian
error function). Theorem 1 thus implies that

lim
t→+∞

(Pe − P e) = 0 where P e =
1

t

t∑
k=1

Q(
√

γk) (13)
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and where γk is defined by γk = 1

(Ψ(σ2)I+AHΦ(σ2)−1A)−1
k,k

− 1.

Remark. As the previous results derive from Theorem 1, it is
important to discuss on the assumption supt ‖A‖ < +∞. This
in conjunction with the normalization constraint Tr(AAH) = t

implies that the rank of A, and therefore the rank of Ã, should
increase to +∞ at the same rate than the number of antennas t.

4. DISCUSSION

In this section, we analyze the results derived in the previous sec-
tion. In particular, in some special cases of interest, we determine
the channel parameters optimizing C(σ2) and P e.

4.1. Low SNR regime

In this section we study the performance in the low SNR regime
i.e when σ2 → +∞ (the high SNR analysis is more complicated
to conduct and will be done in a future paper). For this purpose,
we have to study the behavior of δ(σ2) and m(σ2) (see equation
(4)). It is easily seen that both functions are analytic at +∞ and
both mσ2 and δσ2 tends to 1 when σ2 → +∞.

4.1.1. Mutual Information

In order to characterize the behavior of C(σ2) we need to evaluate
the first three terms of the series expansion of m w.r.t. 1

σ2 , and
use relation (12). Using the equations (4) and the normalization
contraints 1

t
Tr(AAH) = 1

t
Tr(D) = 1 we get after some algebra

a simple expression of the average mutual information:

C(σ2) = 1
σ2 − 1

2σ4

(
2K+1

(K+1)2
+ 1

t
Tr

(
K

K+1
AAH + 1

K+1
D

)2
)
(14)

up to the o(σ−4) terms. The dominant term is of course equal
to 1

σ2 and does not depend on the channel statistics. It is how-
ever interesting to discuss the behavior of the second term and to
evaluate the channel parameters for which it is maximized. We
first consider the case where the Ricean factor K is fixed. In or-
der to maximize the righthandside of (14) one has to minimize
1
t
Tr( K

K+1
AAH + 1

K+1
D)2. The Jensen’s inequality states that

for any positive matrix B, 1
t
Tr(B2) ≥ (

1
t
TrB

)2
with equality if

and only if B = I. Using this result for B = K
K+1

AAH + 1
K+1

D

and noting that 1
t
Tr(B) = 1 shows that the approximate mu-

tual information is maximum if and only if A and D are related
through

K

K + 1
AAH +

1

K + 1
D = I. (15)

In this case the o( 1
σ4 ) term equals −(1 + 2K+1

(K+1)2
). Therefore,

if K is not fixed, C is maximized if and only if K = +∞ and
AAH = I, which is not surprising.

Finally, we mention that if A and D are fixed, it is possible
to find the value of K maximizing the O(σ−4) term of C(σ2).
The optimum value is either 0 or +∞ or a−b

c−b−1
where a, b and

c represent respectively the normalized trace of the matrices D2,
DAAH and (AAH)2. This point is illustrated in section 5.

4.1.2. Bit Error Rate

Similarly, let us study the behavior of P e. For this purpose we
still use that mσ2 → 1 and δσ2 → 1 and deduce immediately

that pk,k(σ2) = 1 − 1
σ2

K||ak||2+1
K+1

+ o( 1
σ2 ), and that γk =

1
σ2

K||ak||2+1
K+1

+ o( 1
σ2 ), where ak represents the k-th column of

matrix A. We remark that the dominant term coincides with the
asymptotic value of the output SINR of the matched filter. Since
the multi-user interference is dominated by the thermal noise for

high noise levels, the matched filter SINR is equal to ||hk||2
σ2 +

o( 1
σ2 ). But it is easily seen that if t → +∞ then ||hk||2 con-

verges to K||ak||2+1
K+1

.
We now evaluate the channel parameters for which the dom-

inant term of P e is minimum. We first note that 1
t

∑t
k=1 γk =

1
σ2 + o( 1

σ2 ) since 1
t

∑
k ||ak||2 = 1 . Thus the empirical mean

of the SINRs does not depend on the channel parameters. As

the function t → Q(
√

t) is convex, P e ≥ Q(
√

1
t

∑t
k γk) =

Q( 1√
σ2 ) with equality if and only if the different (γk)k=1,...,t co-

incide that is when ||ak|| = 1 for each k. In the low SNR regime
the best MMSE performance is thus achieved if and only if the
columns of A have all a unit norm whatever the matrix D is.

4.2. Influence of A in the uncorrelated case

In this section, σ2 is assumed to be fixed and the receive antennas
are assumed to be uncorrelated (D is equal to I). In this context we
want to optimize C and P e w.r.t the matrix A. The Ricean factor
is also assumed to be fixed. Otherwise the best receiver perfor-
mance is achieved for K = ∞ and A = I. As σ2 is fixed in this
section the corresponding notations will be temporarily removed
when referring to C(σ2), δ(σ2) and m(σ2). We also mention that
if D = I, then functions F1 and F2 defined by (5), (6) coincide,
and are denoted F in this section. Therefore the parameters m
and δ defined as the unique solutions of equations (4) also coin-
cide with the unique solution of the equation m = F (m, m). In
the following, A is a fixed LOS term and we compare the corre-
sponding performance indices with CI and P e,I , the performance
indices corresponding to a unitary LOS matrix (it is obvious that
m, and thus C and P e, only depend on AAH ). The various pa-
rameters corresponding to the matrix A will be indexed by A (e.g.
function FA parameters mA...) while the parameters associated
with A = I will be indexed by I . Using these notations allows us
to state the main result of this section.

Theorem 2 CI ≥ CA with equality if and only if AAH = I and
P I,e ≤ P A,e with equality if and only if AAH = I.

Proof. Due to the lack of space, we just prove the first state-
ment. To this end we first establish that for each m ≥ 0, then
FA(m, m) ≥ FI(m, m). Let (µk)k=1,...,t be the eigenvalues of
AAH . Then FA(m, m) can be written as :

FA(m, m) = 1
t

∑t
k=1

[
σ2(1 + m

K+1
) + K

K+1
µk

(1+ m
K+1 )

]−1

.

As the function µ → 1
a+bµ

for a > 0, b > 0 is convex the Jensen’s
inequality gives immediately FA(m, m) ≥ FI(m, m).

In order to complete the proof of the first statement, we remark
that FA(m, m) ≥ FI(m, m) for each m implies that the unique
solutions mA and mI of equations m = FA(m, m) and m =
FI(m, m) satisfy mA ≥ mI . Hence, 1

σ2 − mI ≥ 1
σ2 − mA for

each σ2. Equation (12) gives CI ≥ CA. If the equality holds, mI

must be equal to mA for each σ2. Therefore, it exists m for which
FA(m, m) = FI(m, m), which implies that AAH = I.
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4.3. Influence of D when A is unitary

In the context of the Rayleigh channel it is known ([3]) that re-
ceive antenna correlation tends to degrade the mutual information.
In the context of Ricean channels this claim is not always true. In
particular we have shown that if σ2 → +∞, then the mutual in-
formation is maximum if and only if (15) holds. If A is not unitary
it is clear that the optimum value of D is not I.

On the other hand, if A is unitary, it seems quite relevant
to check if D = I is optimum. Although several simulation re-
sults tend to confirm this behavior, we have been able to identify
counterexamples and show that there exist values of σ2 and K for
which P e is not optimum for D = I.

5. NUMERICAL RESULTS

In this section we illustrate our results by numerical experiments.
In the following experiments the matrix Ã is defined as a normal-
ized version of the matrix (d(θ1), . . . , d(θt)) where d(θ) is the
classical directional vector d(θ) = (1, eiπ cos θ, . . . , eiπ(t−1) cos θ)T

and the angle of arrivals (θk)k=1,...,t are generated according to a
uniform distribution on [0, 2π]. The matrix R corresponds to an
exponential correlation model and the correlation coefficient is de-
noted ρ.

We first compare our approximate performance indices C and
P e with the corresponding values of C and Pe evaluated by Monte-
Carlo simulations. In figure 1 we compare C with the values of C
evaluated by Monte-Carlo simulations for t = 4 and for different
values of K and ρ. As shown in figure 1 our asymptotic evalua-
tions allows us to predict quite well the empirical results for t = 4,
which is in agreement with previous works devoted to asymptotic
analyses of Rayleigh channels (see e.g. [6]). As for the compari-
son between P e and Pe figure 2 shows that the convergence of P e

toward Pe is slower. Here, t = 8 and t = 48, while K = 1 and
ρ = 0.5. This is in accordance with the work [4] in which the con-
vergence rate of the SINR is studied in the context of uncorrelated
Rayleigh channels.

We finally illustrate the result concerning the optimization of
K in the low SNR regime (see subsection 4.1). The predicted
optimum value Kc of K is Kc = 0.74, and we have evaluated
C(σ2) by Monte-Carlo simulations K = 0, 0.2, 0.74, 1, +∞ in
the range 0dB to 5dB. It turns out that K = Kc corresponds to the
optimum mutual information.

Fig. 1. Capacity : Simulation versus Theory

Fig. 2. Bit Error Rate : Simulation versus Theory

Fig. 3. Capacity for ρ = 0.5 : Optimization for K
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