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ABSTRACT

Large system analysis has been used extensively in recent
years to evaluate the performance of Code Division-Multiple
Access (CDMA) and Multi-Input/Multi-Output (MIMO) com-
munications systems. A key feature of this analysis is ap-
plication of results on eigenvalue distributions and moments
of large random matrices. These results enable the efficient
computation of large system performance measures, such
as spectral efficiency and probability of error, which are far
more difficult to compute for finite-size systems. The large
system results typically give an accurate prediction of the
performance of finite-size systems, and offer important in-
sights into system behavior. We give an overview of large
system results for some different communications system
models. Our emphasis is on techniques used previously
by the authors to evaluate the performance of Multi-Carrier
CDMA with the optimal linear receiver.

1. INTRODUCTION

Recent interest in multiuser and multi-antenna wireless sys-
tems has motivated numerous performance studies of dif-
ferent variants of multi-input/multi-output (MIMO) chan-
nels. These systems include Code-Division Multiple Ac-
cess (CDMA) (which corresponds to a multi-input/single-
output channel) with different receivers, along with differ-
ent assumptions about the corresponding channel (e.g., ideal
or fading), and network (e.g., downlink/uplink cellular or
peer-to-peer). Even for relatively simple models, such as a
single-user flat fading MIMO channel with the optimal lin-
ear receiver, it can be quite difficult to compute performance
measures such as probability of error and maximum spec-
tral efficiency averaged over channel realizations. This has
motivated large system analysis, in which the performance
is computed in the limit as certain parameters such as num-
ber of transmit and receive antennas, processing gain, and
users tend to infinity with fixed ratios.
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A key feature of large system analysis is the application
of results on eigenvalue distributions for certain large ran-
dom matrices. Namely, performance measures of interest
can often be written in terms of the eigenvalues of a co-
variance matrix. For the models considered, as the number
rows and columns of the covariance matrix increase to in-
finity in fixed proportion, this set of eigenvalues converges
to a deterministic distribution, which can be explicitly com-
puted. The large system performance measures can then
be expressed in terms of this distribution (or in some cases,
moments of the distribution).

In this paper, we give a brief overview of some recent
large system results for CDMA and multi-antenna systems.
Comprehensive tutorials on the application of the theory of
large random matrices to performance analysis of commu-
nications systems are given in [1] and [2]. Those tutorials
develop the relevant results on large random matrices from
the mathematics literature, and subsequently describe appli-
cations to various communication systems models.1 In con-
trast, our emphasis in this paper is on some relatively simple
techniques, which the authors have used previously to com-
pute the spectral efficiency of Multi-Carrier (MC)-CDMA
with the optimal linear receiver. We also indicate how these
techniques can be used to analyze the transient behavior of
adaptive least squares algorithms for filter estimation.

2. RANDOM MATRIX CHANNEL

We consider a system model in which the received N × 1
vector is given by

r = HSAb + n (1)

where b is a K × 1 vector of transmitted symbols, S is
an N × K matrix, H is an N × N channel matrix, A is
a K × K diagonal amplitude matrix and n is an N × 1
Gaussian noise vector with covariance σ2I (scaled identity
matrix). This model applies to either a CDMA or multi-
antenna system. Namely, for CDMA the columns of S are

1See [2] for a comprehensive set of references to recent work in this
area. Here we refer only to a small subset of directly relevant work.
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the user signatures, N is the processing gain, and K is the
number of users. For the multi-antenna channel, N and K
are the number of receive and transmit antennas, respec-
tively, S is a precoding matrix, and the channel matrix H
models flat fading across transmit-receive antenna pairs.

In the case of CDMA, the signature matrix S is typically
assumed to be random. Namely, for the uplink, the elements
of S are often assumed to be i.i.d., and for the downlink S
is assumed to be a random isotropic matrix so that S†S =
I. The channel matrix then models the effect of inter-chip
interference. In the case of the flat fading multi-antenna
channel, the elements of the channel matrix H are assumed
to be i.i.d..

Finally, we note that for CDMA with inter-chip interfer-
ence, the corresponding channel matrix is Toeplitz. How-
ever, the channel matrix can then be diagonalized through
the use of a cyclic prefix, an inverse FFT at the transmitter,
and an FFT at the receiver. In what follows, we therefore
assume that for CDMA, H is diagonal.

3. RANDOM SPREADING WITH IDEAL
CHANNELS

We start by illustrating large system analysis for a synchronous
CDMA system with ideal channels (H = I) and i.i.d. sig-
natures. (Equivalently, a flat fading multi-antenna channel
with S = I.) Let sk denote the kth column of S (signature
for user k), R = E[rr†] = SPS†+σ2I denote the received
covariance matrix, where P = |A|2 = diag[P1, · · · , PK ],
and Rk = R − Pksks

†
k denote the interference-plus-noise

covariance matrix for user k. Then the output Signal-to-
Interference Plus Noise Ratio (SINR) for user k with an op-
timal linear receiver is βk = Pkγ−1 where γk,n = s†kR

n
ksk

can be interpreted as the nth moment of Rk. Ideally, we
would like to average this quantity over the signature ma-
trix S to obtain a performance measure that depends only
on N , K, and the distribution of Pk. This appears to be
quite difficult; however, we observe that

1 =
1
N

trace (R−1R)

=
1
N

trace
[
R−1(σ2I + SPS†)

]
= σ2 1

N
trace R−1 +

K∑
k=2

1
N

Pkγk,−1

1 + Pkγk,−1
(2)

where we have used the matrix inversion lemma.
Now suppose we let the pair (K,N) → ∞ with fixed

α = K/N . It turns out that γk,n then converges in prob-
ability to a deterministic limit γ∞

n [3–5]. Note that γ∞
n is

independent of k, reflecting the fact that for a large sys-
tem the distribution of interfering signatures is the same
for each user. Furthermore, we also observe that because

γ∞
n = lim(K,N)→∞ ES[γk,n], and sk is independent of Rk,

we must have γ∞
n = lim(K,N)→∞ 1

N trace Rn. Hence from
(2) we have

1 = γ∞
−1

(
σ2 + α

∫
P

1 + Pγ∞
−1

dF (P )
)

(3)

where F (·) is the distribution of the powers over users.
This fixed point equation was first presented in [5], and

was derived by applying results from [3]. The preceding
derivation is presented in [6].2

We remark that replacing σ2 in the preceding derivation
by the complex variable z gives the fixed-point equation for
the Stieltjes transform of the asymptotic ((K,N) → ∞)
eigenvalue distribution of R (ignoring associated conver-
gence issues). The Stieltjes transform is essentially equiv-
alent to the z-transform of the sequence of moments of the
asymptotic eigenvalue distribution, and can be inverted to
obtain the distribution.

The asymptotic eigenvalue distribution (AED) of R can
be used to evaluate large system spectral efficiency for the
optimal (maximum likelihood) receiver [4]. Application
of large system analysis to other multiuser receivers (e.g.,
decorrelating and decision feedback) for the channel model
(1) are described in [1, 2].

4. NON-IDEAL CHANNELS

We now consider (1) with general H, in which case the
asymptotic output SINR for user k with an optimal linear
receiver is βk = Pkρk,−1, where ρk,n = s†kHRn

kH†sk,
R = HSPS†H† + σ2I, and Rk = R − PkHsks

†
kH

†. We
are therefore interested in computing lim(N,K)→∞ ρk,−1 =
ρ∞−1. It can be shown that [7, Proposition 4]

ρ∞n = lim
(N,K)→∞

{
1
N tr[H†RnH] , iid

1
N−K tr[ΠH†RnH] , isometric.

(4)

and Π = I − SS† where iid and isometric refer to the sig-
nature matrix S.

It is possible to use the same trick as in (2) to obtain

1 = σ2
nγ∞

−1 + αρ∞−1

∫
P

1 + Pρ∞−1

dF (P ) (5)

where again γ∞
−1 = lim(K,N)→∞ 1

N tr[R−1]. In this case,

we can calculate γ∞
−1 = E

[
1

λ+σ2
n

]
, where λ is a scalar ran-

dom variable with distribution given by the AED of HSPS†H†.
That AED can be computed by using the S-transform, which
arises in the theory of free probability (for both iid and iso-
metric signatures). Namely, for asymptotically free matri-
ces A and B, the S-transform can be used to compute the

2Strictly speaking, this derivation is not rigorous since it is based on the
assumption that γk,−1 converges uniformly over k to a deterministic limit.
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AED of the product AB in terms of the AED’s of A and
B (see [2]). In our case, because A = H is diagonal and
B = S has iid elements, they are asymptotically free pro-
vided that the diagonal components of H are bounded [2].

Alternative derivations of the maximum SINR for the
model (1) with a linear receiver and iid signatures are given
in [8], [9], and [10]. In particular, we can rewrite ρ∞−1 =
lim(N,K)→∞ 1

N tr[(SPS†+σ2
n(H†H)−1)−1], and note that

the AED of the matrix within the trace is given in [3]. The
previous approach has the advantage of applying to both iid
and isometric signatures, and to non-square channel matri-
ces H.

5. MULTI-SIGNATURE CDMA

One way to increase the data rate in CDMA is to encode
symbols over multiple signatures. In that case the model (1)
becomes

r =
K∑

k=1

HkSkbk + n (6)

where k is the user index, and Sk is an N × Jk random
i.i.d. spreading matrix, where Jk is the number of signatures
assigned to user k. The total number of signatures is J =∑K

k=1 Jk. This model also applies to a multi-access MIMO
channel where Sk is the precoding matrix for user k.

Here we are interested in evaluating how performance
depends on the number of signatures assigned to the differ-
ent users. We therefore fix the number of users, and let Jk,
k = 1, · · · ,K, and N all tend to infinity with fixed ratios
αk = Jk/N . We can then compute a spectral efficiency re-
gion. That is, for two users we can compute the maximum
achievable rate for user 2, given an achievable rate for user
1.

The output SINR for signature j of user k with an op-
timal linear receiver is βj,k = ρj,k,−1, where ρj,k,n =
s†j,kHkRn

j,kH
†
ksj,k, R =

∑K
k=1 HkSkS

†
kH

†
k + σ2I, and

Rj,k = R−Hksj,ks
†
j,kH

†
k. Moreover, it can be shown that

lim ρj,k,n = ρ∞k,n, which is independent of the signature j,
and

ρ∞k,n = lim
1
N

tr[H†
kR

nHk]

where lim denotes the limit (N, Ju) → ∞ with Ju/N →
αu for all u = 1, . . . , K.

The large system SINR ρ−1
k,n can again be computed in

terms of γ∞
−1 = lim γ−1, where γ−1 = 1

N tr[R−1]. This
computation is not a straightforward extension of the pre-
vious results due to the more complicated structure of R.
One approach is to use the following incremental signature
technique. Namely, we consider the change in γ−1 when a
single signature s is added to user u. The load αu is then re-
placed by αu+1/N , i.e., �αu = 1/N . Applying the matrix

inversion lemma, the value of γ−1(αu) with the additional
signature can be evaluated as

γ−1(αu+ �αu) =
1
N

tr[
(
R + Huss†H†

u

)−1
]

so that

γ−1(αu+ �αu) − γ−1(αu) = − s†H†
uR

−2Hus

1 + s†H†
uR−1Hus

�αu

which in the large system limit previously defined gives

∂

∂αu
γ∞
−1 = − ρ∞u,2

1 + ρ∞u,1

(7)

Additional relations can be derived by expanding the
trace of RR−1 and also RR−2 as in Section 3, and com-
bining those with (7) gives

1 = σ2
nγ∞

−1 +
K∑

k=1

αk

ρ∞k,−1

(1 + ρ∞k,−1)
(8)

γ∞
−1 = σ2

nγ∞
−2 −

K∑
k=1

αk
1

(1 + ρ∞k,−1)
∂γ∞

−1

∂αk
(9)

For K = 2 (two users) the SINRs for each user can there-
fore be computed if γ∞

−1, γ
∞
−2 and

∂γ∞
−1

∂αk
are known. We have

not been able to compute those quantities exactly, but note
that they can be approximated easily if Hk is approximated
by UkHk, where {Uk}k=1,...,K are unitarily invariant ran-
dom independent matrices. In that case, the matrices be-
ing summed in R are asymptotically free, and it is possible
to compute the AED of R (and therefore γ−1) through the
use of the R-transform. Namely, given two matrices A and
B, which are asymptotically free, the R transform can be
used to compute the AED of the sum A + B in terms of
the AED’s of A and B [2]. Results in [11] show that the
preceding ”free approximation” is quite accurate for a wide
range of system parameters (loads, SNRs).

We remark that a different set of equations, which also
relate the SINR with γ∞

−1, can be obtained using the S-
transform [11].

These analytical results can be used to compare the per-
formance of MC-CDMA with different sets of loads ({αk})
across users, and also to compare MC-CDMA with Orthog-
onal Frequency Division Multiple Access (OFDMA). OFDMA
has higher spectral efficiency than MC-CDMA, since the
users do not interfere, but requires more coordination since
users must be assigned to specific tones.

6. ADAPTIVE LEAST SQUARES (LS) ESTIMATION

Large system analysis has also been used to study the tran-
sient behavior of adaptive LS receivers for the signal mod-
els considered in Sections 3 and 4 [6]. The LS filter re-
places the covariance matrix R with the sample covariance
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matrix R̂. The transient behavior of the output SINR, i.e.,
SINR as a function of training symbols (assuming a training
sequence is available), or observations (assuming the de-
sired user’s signature and channel are known without train-
ing) can be computed in the large system limit by letting
(K,N, t) → ∞ with fixed ratios K/N and t/N where t
is the number of training symbols or observations. Evalua-
tion of output SINR then depends on computing the AED of
the sample covariance matrix in this limit. This can be ac-
complished using the techniques previously described. Fur-
thermore, it possible to include important algorithmic fea-
tures in the analysis, such as diagonal loading (to prevent
ill-conditioning of the sample covariance matrix), and data
windowing (e.g., exponential weighting to discount past ob-
servations).

7. OTHER MODELS AND FUTURE WORK

Large system analysis, and the application of results from
large random matrix theory, has been used to evaluate the
performance of many other types receivers and communi-
cations systems. For example, reduced-rank receivers, in
which the input signal is projected onto a lower dimen-
sional subspace, can be analyzed using this framework [2].
The large system performance of iterative receivers is eval-
uated in [12, 13]. Large system analysis has also been used
to evaluate the performance of multi-antenna systems with
correlated fading [2].

Evaluation of the minimum bit error rate for CDMA,
corresponding to the optimal maximum a posteriori detec-
tor, has been evaluated in the large system limit through an
application of the replica method in statistical physics [14].
This method is quite different from the methods described
here, and may be useful in other related contexts. Other ap-
plications of large system analysis to signal processing and
communications techniques are still emerging.
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