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ABSTRACT

We consider energy-efficient resource allocation for wire-
less fading channels. We study the case where a sliding win-
dow ARQ protocol such as Go-Back-N is used to provide
reliable communication. In particular, we consider power
allocation policies that take into account the underlyingwin-
dow dynamics. An optimal dynamic programming approach
and a sub-optimal approach based on renewal theory are
given. Numerical results comparing these approaches are
also presented.

1. INTRODUCTION

A key concern with mobile wireless devices is to judiciously
utilize the available energywhile providing acceptable Qual-
ity of Service (QOS). In this paper, we investigate energy
efficient Automatic Repeat reQuest (ARQ) protocols that
strike a balance between throughput and power consump-
tion in a wireless data system. Traditionally ARQ protocols
are thought of as operating at the data link layer and having
little interaction with the underlying physical layer. How-
ever, in wireless environments, knowledge of channel con-
ditions can greatly improve system performance. Indeed, in
most recent wireless systems, ARQ is included along with
various link adaptation techniques in a “radio link layer”.
Here, we consider the performance of ARQ protocols when
physical layer parameters such as transmission power can
be adapted based in part on the available Channel State In-
formation (CSI). We examine the trade-offs between trans-
mitted power and the efficiency of these adaptive protocols.

Several related approaches have been studied in the lit-
erature, e.g [1–5]. In most of this work, the window dynam-
ics of the ARQ protocol are ignored. One of our goals is
to study the impact of these effects. With this in mind, we
consider allocating power for a Go-Back-N protocol with a
window of size W . 1 In such a protocol, an error in the
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1In other protocols, such as Selective Repeat, window dynamics can
also have an impact, e.g via “window stalls”. Similar ideas can be applied
there.

transmission of a packet results in the receiver discarding
the next W −1 packets. Therefore, the optimal transmission
power for a given packet will depend not only on the current
channel state, but also on the delivery status of the previous
W − 1 packets. Moreover, when transmitting the current
packet, the delivery status of all the previous packets will
not be known at the transmitter because of feedback delays,
and so can only be estimated based on the previous power
levels and channel states. Assuming Markovian fading, we
first formulate the optimal power allocation in a Markov de-
cision framework [6]. However, as shown in Sect. 3, this
type of formulation quickly becomes intractable. In partic-
ular, the state-space increases exponentially in the window
size. In Sect. 4, we take a different approach and consider
a simpler adaptation rule which is based on limited state in-
formation. This allows us to obtain a closed-form power
solution whose performance is comparable to the optimal
policy. Moreover, the complexity of this approach is in-
dependent of the window size and only polynomial in the
number of channel states.

2. SYSTEM MODEL

We consider a slotted-time model, where each time-slot cor-
responds to the time to transmit one packet. The transmis-
sion rate is fixed, but the transmitter can adapt the power
used to send each packet. Sending a packet at a higher
power level results in a smaller probability of packet er-
ror. Specifically, during each time-slot, n, the probability
of packet error is given by ρ(P [n], θ[n]), where P [n] is the
transmission power and θ[n] represents the available CSI.
For instance, in a narrow-band fading channel, θ[n] could
represent either an estimate or the exact value of the fading
level during the nth time-slot. Given the exact fading level,
one example of ρ(P, θ) is

ρ(P, θ) = exp (−kθP ), (1)

where k is a constant depending on the modulation and cod-
ing used [7]. Other examples can be found in [4, 5]. The
following applies to any ρ(P, θ) that is decreasing and con-
vex in P for all θ. For simplicity, we assume that for each
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n, θ[n] takes values from a finite set Θ = {θ1, θ2, · · · , θM}
and during each block, the value is independently chosen
according to the probability distribution pΘ(·).

In the above setting, we consider power allocations for
a Go-Back-N protocol that balance energy efficiency with
throughput. To illustrate this, we first consider a power
adaptation scheme, as in [4, 5], that is a function only of
the current channel state θi, i.e., Pi = f(θi). We denote
such a power allocation by P = {P1, P2, · · · , PM}. For a
given P, the average success probability and average power
expended are given, respectively, by

q(P) =
M∑
i=1

(1 − ρ(Pi, θi))pθ(θi),

and P̄ (P) =
∑M

i=1 Pipθ(θi). Consider a Go-Back-N proto-
col with window size W , which is matched to the round-trip
delay, i.e., a packet that is successfully received will be ac-
knowledged after W − 1 time-slots. Additionally, assume
that the transmitter uses a time-out interval of W − 1 time-
slots, so that if a packet is not acknowledgedby this time it is
retransmitted. These assumptions maximize the protocol’s
throughput in a channel without fading [8]. For simplicity,
we assume that acknowledgments are never lost. For i.i.d
fading, the needed average success probability for an av-
erage efficiency or throughput of η (packets/slot) is given
by [8]

q(P) =
W

W − 1 + 1
η

�
= Kgb−n(η). (2)

Here, Kgb−n(η) is a “protocol constant” which depends on
the ARQ protocol and the required efficiency. Given η,
the power allocation that minimizes the long-term average
power is the solution to:

min
{P:Pi≥0 ∀ i}

P̄ (P),

subject to: q(P) = Kgb−n(η). (3)

This problem was considered in [4, 5]. Under our assump-
tion that ρ is convex, this problem can be solved using con-
vex programming. This can be extended to other ARQ pro-
tocols by changing the protocol constant Kgb−n(η).

When the throughput requirements are high, the opti-
mal solution to (3) results in packet transmissions in every
channel state (i.e. Pi > 0 for all i) [4, 5]. As the through-
put requirement is decreased, the optimal power allocation
might involve setting suspending transmission (i.e., setting
Pi = 0) in one or more channel states. In the above formu-
lation, this results in the packet being lost with probability
one and all subsequent transmissions in the current window
will then be discarded by the receiver. Clearly, a better ap-
proach would be to (i) take into account the probability that
a packet will be accepted when deciding on the power to

use and (ii) instead of dropping a packet when P [n] = 0,
simply defer the transmission of the packet until the next
time-slot. Next we consider the design of energy efficient
protocols that take these considerations into account.

3. POWER ALLOCATIONS: DYNAMIC
PROGRAMMING FORMULATION

As stated above, we consider a Go-back-N protocol where,
when P [n] = 0, the corresponding packet is held and trans-
mitted in the next time-slot (unless the transmitter times
out, in which case it goes back and re-sends a previous
packet). This requires more interaction between the physi-
cal and data link layers. In particular, the timer for a packet
should not begin until the packet is actually transmitted by
the physical layer.

For such a protocol, we formulate the optimal power al-
location as a Markov decision problem (MDP), where the
control action is the power level used for each packet and,
as in (3), the objective is to minimize the average power for
a given throughput requirement. We define the transmitter
window at time n to be the set of packets which could poten-
tially be received, but have not yet been acknowledged. The
system’s dynamics depend on whether any of the packets in
the transmitter window are in error2, as well as the current
channel state and control action. This can be summarized by
defining a system state (θ[n], A[n]) where A[n] = i, when
the first error in the transmitter window is at time n − i; in
this case, a transmission at time n will not be accepted at the
receiver. If there are no errors in the transmitter window, we
set A[n] = W , unless P [n − 1] = 0, in which case we set
A[n] = W + 1, indicating the previous transmission was
suspended. When P [n] = 0, the state transition probabili-
ties are:

Pr(Si|Sj , P = 0) =

⎧⎨
⎩

1, i = j + 1, j < W − 1, or
i = W + 1, j ≥ W − 1

0, otherwise
(4)

When P [n] > 0, no transition takes places to A[n+1] = S,
and the state transition probabilities are:

Pr(Si|Sj , P > 0) =

⎧⎪⎪⎨
⎪⎪⎩

1, i = j + 1,j < W − 1
ρ(P, θ), i = 1, j ≥ W − 1
1 − ρ(P, θ), i = W , j ≥ W − 1
0 otherwise

(5)
The per stage cost C(P [n], A[n]) is given by P [n] + λ

if A[n] = W , and is P [n], otherwise, where λ is a Lagrange
multiplier for the throughput constraint. The objective is to
specify a power allocation to minimize the average cost. A
difficulty is that at time n, the transmitter does not observe

2Here we define a packet as being in error if it is received correctly, but
can not be accepted because of an earlier error.

V - 798

➡ ➡



the entire state, i.e this is a partially observed MDP [6]. In
this case, the optimal policy will depend on the information
state I[n], which is a sufficient statistic for the true state
[6]. Here, {A[n − W ],P [n − W ], θ[n − W ],P [n − W −
1],θ[n − W − 1], · · · , P [n − 1],θ[n − 1]} can be shown
to be an information state. Let I represent the set of all
information states. A power allocation is then given by a
policy π : I → P , where P = {P1, P2, · · · , PL} is a set of
feasible transmission powers.3 For each I ∈ I, the average
cost associated with policy π is,

V (I) = lim
N−→∞

1
N

Eπ

⎡
⎣N−1∑

j=0

C(P [j], A[j])|I0 = I

⎤
⎦ . (6)

The optimal policy that minimizes V (I) in (6) can be ob-
tained by solving the Bellman equation [6]:

V ∗(I)+µ∗ = min
P

{
E[C(P, A)|I] +

∑
I′∈I

p(I ′|I)V ∗(I ′)

}
.

(7)
We solve this using relative value iteration. The complexity
of this is O((ML)W−1), where L is the number of power
levels used in P .

4. POWER ALLOCATIONS: RENEWAL THEORY

The complexity involved in finding the optimal policy in
Sect. 3 motivates us to consider simpler power allocations.
Assuming there are N “active” channel states (defined to
be the states with non-zero powers), we consider policies of
the form

P [n] =
{

Pi, if θ[n] = θi, i ≤ N,
0, if i > N.

(8)

If P [n] = 0, i.e., a packet is suspended in the current slot,
it is transmitted in the next slot, with power P [n + 1] de-
termined as in (8). In other words, as in Sect. 2, the power
allocation only depends on the current channel state; how-
ever, here when transmission is suspended, the correspond-
ing packet is held until the next slot. We employ a renewal
theory argument to determine the average throughput and
power for this type of policy. Packet transmission sequences
are assumed to be divided into renewal cycles as in [9]. Each
cycles is terminated by the occurrence of a transmission er-
ror in an “active” state. Figure 1 shows an example of this
for a two-state channel when transmission is suspended in
state θ2. In this case, each cycle is terminated by a transmis-
sion error in state θ1. Note that the suspended channel states
are interspersed within streaks of successful transmissions.
In each cycle, let X be the number of packets transmitted
successfully, and Y be the number of suspended slots not

3The set P is assumed to be finite, so that I remains finite.
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�
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Delivery: F S S S S F F S S
Cycle: I II III

Fig. 1. An example packet transmission sequence.

including the first W slots. For instance, during the first
three cycles in Fig. 1, X is 4, 0, and 2 while Y is 1, 3,and 0,
respectively. The start of each cycle will be a renewal event.
From renewal reward theory, the efficiency is given by,

η =
E[X ]

W + E[X + Y ]
. (9)

Assuming transmissions occur in only N active states (Pi =
0, i > N ), the above expectations can be calculated by mod-
eling each cycle as a Markov chain with a trapping state
corresponding to the occurrence of an error and by assign-
ing an appropriate reward ri to each state θi. The reward
aggregated before an error occurs, when the initial state is
θi, is given by

r̄i = (1 − ρ(P, θi))[ri +
M∑

j=1

pθ(θi)r̄j ] ∀ i. (10)

Here, E[X ] can be calculated by assigning the rewards of 1
and 0 for staying in active and inactive states, respectively.
Since, E[X + Y ], is the average number of slots before an
error occurs, it can be found by setting r i = 1 for all i.
Given the efficiency of the protocol η, the needed average
success probability can be derived from (9) as

N∑
i=1

pθ(θi)(1− ρ(Pi, θi)) =
η((W − 1)

∑N
i=1 pθ(θi) + 1)

(W − 1)η + 1
,

(11)
Assuming N active channel states, the average power ex-
pended per slot is then given by

P̄ (N) =
N∑

i=1

Pipθ(θi). (12)

Thus, given N active states, the optimal power allocation
is obtained by minimizing (12) subject to the constraint in
(11). The overall optimal power allocation can then be found
by iterating over the number of active states. However,
the following proposition simplifies this iterative procedure.
Here, Nmin is the minimumnumber of channel states needed
so that the throughput constraint in (11) remains feasible.

Theorem 1 For ρ(Pi, θi) = exp(−kθiPi), P̄ (N) is uni-
modal in N ∈ [Nmin, M ], if η < 1.72

W−1 .

We omit the proof due to space considerations.
The computation of the optimal policy in this case is

O(M2). This compares favorably against the complexity
of the dynamic programming approach in Sect. 3 .
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5. NUMERICAL RESULTS

We study the performance of the two approaches discussed,
through a numerical example and compare them with the
policy obtained in (3). We shall refer to the policy in (3) as
“weak interaction”, to differentiate it from the other schemes
that require a stronger interaction between the data link and
physical layers. Consider an i.i.d. fading channel with four
possible channel states representing fade levels of 1dB, 3dB,
5dB and 10dB, and steady-state probabilities of 0.33, 0.15,
0.21 and 0.31, respectively. The error function is as in (1)
with k = 1.5. Figure 2 shows the efficiency as a function
of the average power for the three schemes with W = 2.
There is little difference between the dynamic programming
and renewal-based approaches. However, both these ap-
proaches can reduce the average power by approximately
80 % over the weak interaction case. Figure 3 examines
the performance of the renewal-based approach as the win-
dow size increases (for such window sizes the complexity of
the dynamic programming approach becomes prohibitive.)
The power savings obtained through this approach (over the
weak interaction) increases with the window size. This is
because at low throughputs, the transmitter is able to selec-
tively transmit in the good channel states, thereby reducing
the chance of transmission errors.
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Fig. 2. Power allocations for Go-Back-N with W = 2.

6. CONCLUSIONS

We presented several energy-efficient variants of a Go-Back-
N protocol for wireless environments, which require some
amount of coupling between the data link and physical lay-
ers. These protocols exploit different amount of knowl-
edge of the channel conditions and the previous decisions
to achieve different balances between complexity and per-
formance.
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