
POMDP MULTI-ARMED BANDIT FORMULATION FOR ENERGY MINIMIZATION IN
SENSOR NETWORKS

Vikram Krishnamurthy

Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, V6T 1Z4, Canada.

email: vikramk@ece.ubc.ca

ABSTRACT

In Network Centric Warfare, sensor platforms with active
sensing equipment such as radars can betray their existence,
by emitting energy that can be intercepted by enemy surveil-
lance sensors thereby increasing the vulnerability of the en-
tire combat system. To achieve the important tactical re-
quirement of low probability of intercept (LPI), requires dy-
namically controlling the emission energy of sensors. In
this paper we propose computationally efficient dynamic
emission control and management algorithms for multiple
networked heterogenous sensors. By formulating the prob-
lem as a partially observed Markov decision process with an
on-going multi-armed bandit structure, near optimal sensor
management algorithms are developed for controlling the
active sensor emission to minimize the threat.

1. INTRODUCTION

The Joint Vision 2010 [1] is the conceptual template for
US Armed forces. One of the fundamental themes under-
lying the Joint Vision 2010 is the concept of Network Cen-
tric Warfare (NCW). The tenets of NCW are [1]: (i) A ro-
bustly networked force improves information sharing; (ii)
Information sharing enhances the quality of information and
shared situational awareness; (iii) Shared situational aware-
ness enables collaboration and self-synchronization, and en-
hances sustainability and speed of command; (iv) These, in
turn, dramatically increase mission effectiveness.

The information for generating battlespace awareness
in NCW is provided by numerous sources, for example,
stand-alone intelligence, surveillance, and reconnaissance
platforms and sensors employed on weapons platforms. In
the fundamental shift to network-centric operations, sen-
sor networks emerge as a key enabler of increased com-
bat power. Networked sensors have several advantages in-
cluding decreased time to engagement, increased ability to
detect low signature targets, improved track accuracy and
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continuity, improved target detection and identification and
reduced sensor detectability to the enemy [2].

In this paper, we focus on this reduced sensor detectabil-
ity aspect of NCW. We present decentralized sensor man-
agement algorithms for reducing the detectability of net-
worked sensor platforms to the enemy. We consider the
problem of how to dynamically manage and control the emis-
sion energy of active sensors in multiple platforms to min-
imize the threat posed to these platforms in combat situ-
ations. In the defense literature the acronym EMCON is
used for emission control. Emission management/control is
emerging in importance due to the essential tactical neces-
sity of sensor platforms satisfying a low probability of inter-
cept (LPI) requirement. This LPI requirement is in response
to the increase in capability of modern intercept receivers to
detect and locate platforms that radiate active sensors. The
emission management system needs to dynamically plan
and react to an uncertain dynamic battlefield environment.

The aim of this paper is to answer the following ques-
tion: How should the sensor manager achieve EMCON by
dynamically deciding which platforms (or group of plat-
forms) are to radiate active sensors at each time instant in
order to minimize the overall threat posed to all the plat-
forms while simultaneously taking into account the cost of
radiating these sensors and the quality of service they pro-
vide? Unlike platform centric warfare where scheduling of
sensors is carried out within a platform, the above aim is
consistent with the philosophy of network centric warfare
where given a network of several platforms, the sensor man-
ager dynamically makes a local decision as to which plat-
forms should radiate active sensors.

2. MULTI-PLATFORM EMISSION CONTROL
(EMCON) PROBLEM

The network centric multi-platform system we consider in
this paper consists of three sub-systems: networked sensor
platforms, a sensor manager which decides which platform
(or group of platforms) should radiate active sensors, and
a threat evaluator which yields information about the threat
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posed to the active platform, see Fig.1.
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Fig. 1. Schematic setup consisting of 3 types of networked
platforms (unmanned aerial vehicles (UAVs), Track vehi-
cles and Ground based Radar), Threat Evaluator (IR Sensor
Satellite, AWACS, Picket sensors) and EMCON.

2.1. Heterogeneous Networked Sensor Platforms

Consider P heterogeneous sensor platforms indexed by p =
1, . . . , P . Active sensors (e.g., radar) are typically linked
with the deployment of weapon systems whereas passive
sensors (e.g., ESM, ELINT (electronic intelligence), FLIR
(forward looking infra-red radar), imagers) are often used
for surveillance. We assume that at each time instant only
one platform (or group of platforms) is allowed to radiate
active sensors and the other P − 1 platforms can only use
passive sensors. This assumption is justified since in a net-
work of sensor platforms, certain groups of sensor platforms
are always operated together. For example, in multi-static
radar sensor groups, alternately one radar sensor transmits
while all of the other distributed networked sensors are used
as receivers simultaneously.

2.2. Emission Level Impact (ELI)

Let k = 0, 1, 2, . . ., denote discrete time. At each time in-
stant k the sensor manager decides which platform to acti-
vate. Let uk ∈ {1, . . . , P} denote the platform that is acti-
vated by the sensor manager at time k. Denote the emission
level impact (ELI) of platform p at time k as s

(p)
k . The ELI

of platform p is the cumulative received emission registered
by the enemy sensors from platform p until time k:

s
(p)
k+1 = s

(p)
k + e

(p)
k+1, p ∈ {1, . . . , P}. (1)

Here, e
(p)
k denotes the instantaneous (incremental) emis-

sion registered at the enemy from platform p at time k.
The ELI is a surrogate measure for the effectiveness of the
LPI feature of the sensor platform - the larger the ELI s

(p)
k ,

the worse the LPI feature of the sensor platform. Due to
the uncertainty in modelling of how the enemy registers
the ELI, {e(p)

k } and hence {s(p)
k } are assumed to be ran-

dom processes. Assume that the ELI s
(p)
k is quantized to

a finite set {1, 2, . . . ,Np} where the values in the finite
set correspond to physical ELI values, e.g., 1 is low, 2 is
medium and 3 is high. Given that the ELI s

(p)
k is finite

state and at any time instant k depends on the ELI at the
previous time instant (1), it is natural to model the evo-
lution of {s(p)

k } probabilistically as a finite state Markov

chain. It is clear from (1) that the ELI s
(uk)
k of the plat-

form (or group of sensors) radiating active sensors at time
k, evolves with time. The ELI of the platforms that only
use passive sensors remain approximately constant since the
sensors do not emit energy that can be intercepted by the
enemy, i.e, e

(p)
k is small when p �= uk. Thus: If uk =

p, the ELI s
(p)
k evolves according to an Np-state homo-

geneous Markov chain with transition probability matrix

A(p) = (a(p)
ij )i,j∈Np = P

(
s
(p)
k+1 = j | s(p)

k = i
)

. The states

of all the other (P − 1) platforms using passive only sen-
sors are unaffected, i.e., s(p)

k+1 = s
(p)
k , if platform p only uses

passive sensors at time k, or equivalently A(p) = I if p �=
uk.

2.3. Threat Evaluator

In battlefield environments, the ELI {s(p)
k }, p = 1, . . . , P ,

registered by the enemy is not directly available to our sen-
sor manager. We assume that local sensors on each platform
p together with a centralized threat evaluation system share
information over the network to compute an observed threat
level posed to each platform p = 1, . . . , P – which is a prob-
abilistic function of the ELI as described below. The cen-
tralized threat evaluation system typically comprises of an
infrared (IR) sensor satellite satellite, ground based picket
sensors, surveillance sensor network and AWACS (Airborne
Warning and Control System) aircraft that observe the be-
haviour of the enemy. Fig.1 shows the schematic setup.

Let z
(p)
k denote the observed cumulative threat posed to

platform p at time k. Then the process {z(p)
k } evolves with

time for each platform p as z
(p)
k+1 = z

(p)
k + y

(p)
k+1, p ∈

{1, . . . , P} where y
(p)
k denotes the observed instantaneous

(incremental) threat posed to platform p at time k. Clearly
the threat posed to any platform p is a function of the ELI of
the platform. Thus the instantaneous threat y

(p)
k is a prob-

abilistic function of the instantaneous emission e
(p)
k . For

example, one possible model for the instantaneous threat is
y
(p)
k = s

(p)
k − s

(p)
k−1 + t

(p)
k + w

(p)
k where t

(p)
k is a positive

valued incremental trend process – which could be deter-
ministic, e.g., t

(p)
k = 1 for all time k, or a stationary process
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that is statistically independent of w
(p)
k (defined below) and

s
(p)
k . Hence the cumulative threat z

(p)
k posed to platform p

typically monotonically increases with time k. w
(p)
k denotes

the observation noise and takes into account several factors
such as measurement errors in the surveillance sensors and
incomplete knowledge and uncertainty about the enemy.

We assume y
(p)
k is quantized to a finite set {1, 2, . . . ,Mp}

where, for example, 1 denotes a small increment, 2 a medium
increment, and 3 a large increment in the threat level. The
observed threat y

(p)
k is a probabilistic function of the instan-

taneous emission e
(p)
k = s

(p)
k − s

(p)
k−1. This probabilistic

relationship is summarized by the (Np×Np) likelihood ma-
trices B(p)(1), . . . , B(p)(Mp),

B(p)(m) = (b(p)
ijm)i,j∈Np , b

(p)
ijm

�
= P(y(p)

k+1 = m|s(p)
k = i, s

(p)
k+1 = j)

denotes the conditional probability (symbol probability) of
the threat evaluator generating an observed threat symbol of
m when the instantaneous emission is e

(p)
k = s

(p)
k+1 − s

(p)
k .

If the platform p is inactive, i.e., p �= uk, then since the
emission e

(p)
k = s

(p)
k − s

(p)
k−1 is zero it follows that b

(p)
ijm = 0

for i �= j. Thus B(p)(m) = I if p �= uk.

Let Yk = (y(u0)
1 , . . . , y

(uk−1)
k ) denote the observed threat

history and Uk = (u0, . . . , uk) denote the sequence of past
decisions made by the EMCON functionality of the sensor
manager. The above formulation captures the essence of a
network centric system – the sensor manager controls differ-
ent sensors in different platforms. This is in contrast to the
older concept of platform centric systems where individual
platforms have their own sensor managers.

2.4. Network Sensor Manager and Cost

The above probabilistic model for the sensor platform, emis-
sion level impact (ELI) and threat evaluator together consti-
tute a controlled Hidden Markov Model (HMM) [3]. Here
we address the fundamental issue of how the sensor man-
ager should dynamically decide which platform (or group
of platforms) should radiate active sensors at each time in-
stant to minimize a suitable cost function that encompasses
all the platforms. The EMCON functionality of the sensor
manager decides which platform to activate at time k, based
on the optimization of a discounted cost function which we
now detail: The instantaneous cost incurred at time k due to
all the deployed platforms (both active and passive ) is

Ck = c(s(uk)
k , s

(uk)
k−1 , y

(uk)
k , uk)+

∑
p�=uk

r(s(p)
k , s

(p)
k−1, y

(p)
k , p)

(2)
where c(s(uk)

k , s
(uk)
k−1 , y

(uk)
k , uk) denotes the cost of radiating

active sensors in the platform uk, and
r(s(p)

k , s
(p)
k−1, y

(p)
k , p) denotes the cost of using only passive

sensors in platform p. Based on the observed threat his-
tory Yk = (y(u0)

1 , . . . , y
(uk−1)
k ), and the history of decisions

Uk−1 = (u0, . . . , uk−1), the sensor manager needs to de-
cide which sensor platform to activate at time k. The sensor
manager decides which platform to activate at time k based
on the stationary policy µ : (Yk, Uk−1) → uk. Here µ is a
function that maps the history Yk and past decisions Uk−1 to
the choice of which platform uk is to radiate active sensors
at time k. Let U denote the class of admissible stationary
policies, i.e., U = {µ : uk = µ(Yk, Uk−1)}. The total
expected discounted reward over an infinite time horizon is
given by

Jµ = E

[ ∞∑
k=0

βkCk

]
(3)

where β ∈ (0, 1) denotes the discount factor, Ck is defined
in (2) and E denotes mathematical expectation. The aim of
the sensor manager is to determine the optimal stationary
policy µ∗ ∈ U which minimizes the cost in (3).

It is well known, [4, pp.31] that by defining c(i, p) =∑Np

j=1

∑Mp

m=1 c(i, j, m.p)a(p)
ij b

(p)
ijm, etc. we use the equiva-

lent cost Ck = c(s(uk)
k , uk) +

∑
p�=uk

r(s(p)
k , p) in (3) since

this has the same expectation as Ck in (2). Therefore, since
the ELIs s

(p)
k of the passive platforms p �= uk remain con-

stant, their cost r(s(p)
k , p) is also constant. Of course the cost

c(s(uk)
k , uk) of the active platform evolves with time, since

s
(uk)
k evolves with time. To minimize the overall threat to

all platforms one can choose c(s(p)
k , s

(p)
k+1, y

(p)
k , p)

= r(s(p)
k , s

(p)
k+1, y

(p)
k , p) = y

(p)
k leading to the infinite hori-

zon cost (3)
∑∞

k=0 βk
∑P

p=1 E{y(p)
k } which is the total dis-

counted cumulative threat posed to all the P platforms. Typ-
ically the cost includes the Quality of service (QoS) and
sensor usage costs of the sensors in platform p – usually,
the QoS from radiating active sensors in a platform is much
higher than using only passive sensors.

2.5. Information State Formulation

The above stochastic control problem (3) is an infinite hori-
zon Partially Observed Markov Decision Process (POMDP).
We convert it to a fully observed problem in terms of the
information state, (see [5] for a textbook exposition) as fol-
lows: For each sensor platform p, the information state at

time k, denote by x
(p)
k x

(p)
k (i)

�
= P

(
s
(p)
k = i |Yk, Uk−1

)
,

i = 1, . . . ,Np. The information state can be computed re-
cursively by the HMM state filter [3]) as given in (5) below.

Using the smoothing property of conditional expecta-
tions, the EMCON cost (3) can be re-expressed in terms of
the information state as follows:

Jµ = E
[ ∞∑

k=0

βk

(
c′(uk)x(uk)

k +
∑

p�=uk

r′(p)x(p)
k

)]
(4)
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where c(uk) denotes the Nuk
dimensional reward vector

[c(s(p)
k = 1, uk), . . . , c(s(p)

k = Nuk
, uk)]′, and r(p) is the

Nuk
dimensional reward vector [r(s(p)

k = 1, p), . . . , c(s(p)
k =

Np, p)]′. The aim of the EMCON problem is to compute the
optimal policy argminµ∈U Jµ.

In terms of the above information state formulation, the
EMCON problem described above can be viewed as the fol-
lowing dynamic scheduling problem: Consider P parallel
HMM state filters, one for each sensor platform. The pth
HMM filter computes the ELI (state) estimate (filtered den-
sity) x

(p)
k of the pth platform, p ∈ {1, . . . , P}. At each time

instant, only one of the P platforms radiates active sensors,
say platform p. Let y

(p)
k+1 be its observed threat level. This

is processed by the pth HMM state filter which updates its
estimate of the sensor platform’s ELI as

x
(p)
k+1 =

B(p)′(y(p)
k+1)�A(p)′x(p)

k

1′B(p)(y(p)
k+1)A

(p)′x(p)
k

if p = uk (5)

where � denotes Hadamard product1, and 1 is anNp-dimensional
column unit vector. The ELI estimates of the other P − 1
platforms that use only passive sensors remain unaffected,
i.e., since B(q)(m) = I and A(q) = I if q �= uk, we have

x
(q)
k+1 = x

(q)
k if platform q only uses passive sensors .

3. MAIN IDEAS

Given the above formulation, we briefly comment on the so-
lution procedure - see [6] for a complete exposition.
1. In general, POMDPs are known as PSPACE hard prob-
lems [7] requiring exponential memory and computation.are
computationally intractable apart from examples with small
state and action spaces. For realistic EMCON problems in-
volving several tens or hundreds of sensor platforms, the
POMDP has an underlying state space that is exponential in
the number of platforms – which is prohibitively expensive
to solve. The main point in the above formulation of the
EMCON problem is that it is a POMDP with a very spe-
cial structure – called an on-going multi-armed bandit [8].
This multi-armed bandit problem structure implies that the
optimal EMCON policy can be found by a so-called Git-
tins index rule, [8]. As a result, the multi-platform EMCON
problem simplifies to a finite number of single-platform op-
timization problems. Hence the optimal EMCON policy is
indexable – meaning that at each time instant it is optimal to
activate the sensors on the platform (or group of platforms)
with the highest Gittins index. There are numerous appli-
cations of multi-armed bandit problems in the operations
research and stochastic control literature, see [8] and [9].

1For square matrices A, B, C, the Hadamard product C = A�B has
elements cij = aijbij

2. Given the multi-armed bandit POMDP formulation and
the indexable nature of the optimal EMCON policy, the
main issue is how to compute the Gittins index for the in-
dividual sensor platforms. While there are several algo-
rithms available for computing the Gittins indices for fully
observed Markov decision process bandit problems [5], our
POMDP bandit problem is more difficult since underlying
finite state Markov chain (actual threat level) is not directly
observed – instead the observations (observed threat levels)
are a probabilistic function of the unobserved finite state
Markov chain. The main contribution of [6] is to present
finite dimensional algorithms for computing the Gittins in-
dex of a POMDP bandit.
4. A key feature of the multi-armed bandit formulation is
that the EMCON algorithm for selecting which platforms
should radiate active sensors can be fully decentralized. Given
the indexable nature of the problem, we present in [6] a scal-
able decentralized optimal EMCON algorithm whose com-
putational complexity is linear in the number of platforms.
A sub-optimal version of the multi-armed bandit based EM-
CON algorithm is presented using Lovejoy’s approximation
[10]. Also in [6] a two time scale controller that can deal
with slowly time varying parameters is presented.
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