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ABSTRACT

In dynamic susceptibility contrast perfusion weighted 

imaging, recirculation effect is normally removed by 

gamma-variate fitting from concentration curves before 

estimating hemodynamic parameters. At lower SNR, 

however, many fitting failures may be resulted. Moreover, 

when cerebral hemodynamics is compromised e.g., 

cerebral ischemia, a substantially broadened concentration 

curve is anticipated, resulting in the first passage 

overlapping with recirculation, which again causes a 

gamma-fit to fail to consistently discern recirculation 

contributions from the first passage. We propose to 

exploit independent component analysis to obviate 

recirculation effect. We demonstrate that such a technique 

can remove recirculation in normal and ischemic brain 

tissues while preserving the first passage. This in turn 

allows for accurate recirculation elimination and hence 

improved estimation of cerebral blood volume particularly 

when overlapping between first passage and recirculation 

is suspected as in the case of an ischemic lesion. 

1. INTRODUCTION 

Dynamic susceptibility contrast (DSC) approaches have 

been widely utilized in the study of tissue perfusion. In a 

DSC experiment, we inject a bolus of paramagnetic 

contrast agents (for example, Gd-DTPA) into the brain. 

The presence of intravascular contrast agents passing 

through brain capillaries induces a signal drop. By rapidly 

acquiring images prior to, during and after the injection of 

a contrast agent, the temporal signal changes induced by 

the presence of a contrast agent can be obtained. This 

typically consists of a baseline signal, a first passage and a 

recirculation of contrast agent.  

In DSC perfusion weighted imaging (PWI) 

approaches, the temporal susceptibility signals are 

converted to concentration time curves and effects of 

recirculation need to be removed prior to the estimation of 

cerebral blood flow (CBF) and cerebral blood volume 

(CBV). The concentration curves are normally fitted to a 

gamma-variate function in an attempt to remove 

recirculation. However, this approach may be inaccurate 

at low SNR ([1]). In addition, important physiological 

information might be compromised by imposing a 

common analytic equation to all measured concentration 

curves.

Independent component analysis (ICA) is a widely 

used method for blind source separation, i.e., to determine 

underlying independent signal sources from observed data 

without any prior knowledge of the sources ([2]-[5]). In 

this investigation, we propose to use ICA to remove 

recirculation from the concentration curves assuming that 

the first passage and recirculation can be distinguished as 

different components regardless whether these two are 

overlapped. Our results demonstrate that the reconstructed 

concentration curves after removing the components 

contributed by recirculation are free of recirculation in 

both normal volunteers and stroke patients. 

2. GAMMA-VARIATE FITTING 

In DSC perfusion weighted imaging approaches, effects 

of recirculation need to be removed prior to estimating 

CBF and CBV. Concentration curves are normally fitted 

to a gamma-variate function C (t) defined by Eq. (1) in an 

attempt to remove second bolus and residual signal 

decrease after the end of the first pass bolus ([6], [7]).
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where A, B and D are shape parameters for the bolus, and 

t0 is the time to arrival (TTA) for the contrast agents to 

arrive in the region of interest (ROI). 

The parameters A, B, t0, and D may be determined by a 

regression of C (t) on   samples of the concentration curve 

C(t) up to the right turning point using Levenberg-

Marquardt method. The right turning point of C(t) is 

estimated to lie in the half maximum after the time to peak 

(TTP), whereas TTP is determined when C(t) reaches the 

maximum. At convergence, the fitted curve are 

extrapolated from the right turning point to the end to get 

the full ranged fitted curve Cf(t).

This approach has, however, several drawbacks. 

First, at lower SNR, the fit highly depends on the time 

resolution of the imaging sequence and the maximal 
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signal drop of the corresponding susceptibility signal 

yielding a higher number of fitting failures can be caused 

([1]). The performance of gamma-variate fitting may thus,

deteriorate for broadened and noisy concentration time 

curves in case of cerebral ischemia. Second, important 

physiological information might be compromised by 

imposing a common analytic equation to all measured 

concentration curves. Third, this approach will only work 

in cases where the first passage can be well separated 

from the recirculation. When cerebral hemodynamics is 

compromised such as cerebral ischemia, a substantially 

broadened concentration curve is anticipated, leading to 

an inevitable overlap of the first passage with 

recirculation. Under such a condition, a gamma-variate fit 

is unlikely to offer a consistent means of discerning 

contributions of recirculation from the first passage. 

3. AN ICA METHOD TO REMOVE 

RECIRCULATION EFFECTS

Independent component analysis (ICA) is a widely 

popular approach to decompose observed data into 

unknown latent statistically independent signal sources 

without any prior knowledge of the sources. 

Based on the assumption that the temporal 

concentration signals are linear superposition of 

hemodynamic changes resulting from contributions such 

as arterial, venous, tissue, recirculation and noise 

(including cardiac, respiratory and white noise), we 

proceed in this work to isolate recirculation contribution 

from other sources blindly. These underlying sources are 

temporally statistically independent in the sense that the 

first pass bolus and primary concentration increase 

resulting from the arterial component has the earliest TTA, 

followed by venous contribution, tissue contribution, and 

secondary bolus and residual concentration increasing due 

to recirculation contribution.

Infomax ([3]) is one of the most widespread ICA 

algorithms and based on higher order statistics. It aims to 

minimize the redundancy between the unknown sources. 

Temporal Infomax algorithm using a maximum likelihood 

formulation (ICAML) analysis was applied to 

concentration time curves for each 5×5 ROI as Eq. (2).  
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where Ci(tj) is the concentration curve of voxel i at tj, aik is 

the mixing coefficient which suggests the expression level 

of the kth latent source at voxel i, while sk(tj) is the kth

temporal independent component (IC) at tj, N is the 

number of measurement, and M is the number of sources. 

Since the number of latent components, M, is unknown, 

a Bayesian Information Criterion (BIC) method was 

employed to estimate the number of sources ([8]). The 

model order is determined by estimating the posterior 

probability of the model containing N components given 

the observed data. The Matlab code for ICAML with BIC 

is available through the website ([9]). Our BIC results 

indicate that M varies at different SNR values. However, 

by applying BIC to both normal volunteers and stroke 

patients with different SNRs and inspecting the 

component outcomes, we found that between 5 and 7 

components account for most signal variance hence 

agreeing with our original assumption that the temporal 

signal is a linear combination of arterial, venous, tissue, 

recirculation and noise contributions. In our approach, M

was first set to 5. ICs were ranked according to the 

relative energy Pk (k = 1, ..., M) in a descending order as 

Eq. (3). 
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ICs with a low relative energy and a late broad dip 

were identified as the recirculation components. If no 

recirculation associated IC was identified, M was 

increased up to 7 and ICA was repeated. After identifying 

the recirculation components, such components were 

excluded (Eq. (4)) and concentration curves were 

reconstructed using the remaining ICs as Eq. (5). 
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4. RESULTS 

Perfusion-weighted images were acquired from three 

healthy volunteers (one male, two females, age 24-33) at a 

3T scanner (Allegra, Siemens) and five acute stroke 

patients (three males, two females, age 63-83) within 3-6 

hrs from symptom onset at a 1.5T scanner (Vision, 

Siemens) using a single shot *

2T -weighted EPI sequence. 

The imaging parameters were similar for both patients and 

volunteers with the exception of the repetition time (TR) 

and echo time (TE) (1.5s and 28 msec at 3T and 2s and 54 

msec at 1.5T). Cerebral spinal fluid (CSF) regions were 

removed and susceptibility signals were converted to 

concentration curves. Then ICAML analysis was applied. 

To evaluate the performance of ICA for removing 

recirculation effects, the concentration curves were also 

fitted by Gamma-variate functions as a comparison. The 

fitting was implemented in Matlab using the curve fitting 

toolbox.

In order to determine the effectiveness of the 

proposed ICA approach in removing effects of 

recirculation, relative cerebral blood volume (rrCBV) was 

computed for each voxel as the area underlying each 
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concentration curve ([6]) with recirculation removal using 

ICA (rrCBV(i)), gamma-variate fitting (rrCBV(f)) and 

without recirculation removal (rrCBV(wo)). Also, 

percentage rrCBV difference maps were computed as: 

rrCBVwo,i =(rrCBV(wo)-rrCBV(i))/ rrCBV(wo) (6)

rrCBVwo,f =(rrCBV(wo)-rrCBV(f))/ rrCBV(wo) (7)

rrCBVf,i =(rrCBV(f)-rrCBV(i))/ rrCBV(f) (8)

The proposed approach is highly effective and 

consistent for removing recirculation in normal volunteers 

as illustrated in Fig. 1. A PWI image is shown in (a), 

whereas the red square indicates the 5×5 ROI used for 

fitting and ICA analysis. Five ICs are observed and IC4 

(marked by the black arrow) is identified as the 

recirculation component with a low relative energy of 

1.09% and a late broad dip. The averaged unfitted C(t)

(solid line),  gamma-variate fitted Cf(t) (dashed line), and 

ICA result )(
~

tC (plus line) after the removal of the 

recirculation component are shown in (c). The percentage 

rrCBV difference between gamma-variate fit and ICA 

analysis ( rrCBVf,i) is shown in (d). In addition, the 

percentage rrCBV differences demonstrate that the 

difference between unfitted vs. ICA analysis, unfitted vs. 

fitted, and fitted vs. ICA analysis is 0.331 0.114,

0.338 0.131, and -0.024 0.121 respectively. These 

findings suggest that gamma-variate fitting and ICA have 

similar performance in recirculation removal when the 

first passage and the recirculation are well separated.

In addition, a representative example from an acute 

stroke patient is shown in Fig. 2. A T2-weighted image is 

shown in (a), delineating the presence and extent of the 

ischemic lesions. The red square indicates the 5×5 ROI 

used for ICA in the ipsilateral hemisphere with respect to 

the lesion.  Seven ICs are identified (b) and IC5 (marked 

by the black arrow) is identified as the recirculation 

component with a low relative energy of 9.06% and a late 

broad dip. It is immediately evident that in comparison to 

the gamma-variate fitting, the proposed approach 

substantially minimizes the contribution of recirculation

while preserving the effects of first passage (c). The 

percentage rrCBV difference map rrCBVf,i is shown in 

(d). In addition, to compare ICA analysis with gamma-

variate fitting among brain regions, T2 image was 

employed to define two ROIs, namely, T2-defined final 

lesions (i.e. infarct regions) and noninfarct regions in the 

ipsilateral hemisphere, while a normal ROI was defined in 

the contralateral hemisphere. The means and standard 

deviations of the percentage rrCBV differences are given 

in Table 1. As anticipated, the largest differences between 

fitting and ICA are located within the ischemic final 

lesion where the first passage and recirculation heavily 

overlap (Fig.2 (d) and Table 1).

5. CONCUSION 

We have demonstrated that ICA is capable of removing 

effects of recirculation in both normal and, more 

importantly, the ischemic brain tissues while preserving 

the contributions of first passage. This approach is likely 

to have profound implications for the calculation of CBF 

and CBV, particularly in regions where a substantial 

overlap between first passage and recirculation is 

suspected as in ischemic lesion. In the future, more PWI 

images acquired from acute stroke patients will be studied 

to assess the effectiveness of ICA in removing 

recirculation effects while preserving the first passage.

In conclusion, the ability to accurately remove effects 

of recirculation should further improve the accuracy of 

DSC for obtaining CBV and CBF. 
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Table 1 

Fig. 1 A normal volunteer example 

Fig. 2 An acute stroke patient example 

rrCBVwo,i rrCBVwo,f rrCBVf,i

Contralateral

Normal ROI 

0.445 0.150 0.361 0.191 0.103 0.218

Ipsilateral

noninfarct ROI 

0.471 0.163 0.352 0.236 0.143 0.255

T2 lesion 

(infarct) ROI 

0.484 0.153 0.281 0.340 0.157 0.424

(d) Percentage rrCBV difference map 

(c) Averaged concentration curves

(a) A PWI image 

(b) Five ICs 

(c) Averaged concentration curves 

(d) Percentage rrCBV difference map 

(a) A T2  image 

(b) Seven ICs 
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