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Abstract

Uncovering genetic pathways is equivalent to finding clusters of 

genes with expression levels that evolve coherently under subsets 

of conditions. This can be done by applying a biclustering 

procedure to gene expression data. We propose a new biclustering

procedure that derives biclusters from candidate subsets of 

conditions. These candidate subsets of conditions are identified by

comparing pairs of gene expression data. To reduce complexity,

the procedure discards early in the candidate subset of conditions 

formation stage any subset that is predicted to have less than a

desired minimum number of conditions. When the biclusters are 

required to have more than a minimum number of genes, we show 

that further reduction in complexity can be achieved with no loss

of performance by comparing each gene with only a subset of all 

genes. The proposed approach finds all genes expression levels 

that evolve coherently under each of the candidate subsets of 

conditions using a fast approximate pattern matching technique. 

This approximate pattern matching procedure can find a pattern in 

a list even if instances of the pattern in the list have random 

insertions of characters between consecutive characters in the 

pattern. As compared to prior techniques, the approach finds all

maximum size biclusters with a number of conditions greater than 

a specified minimum. It has a run time equivalent to the fastest of 

these techniques, even though the fastest biclustering techniques 

are not guaranteed to find all biclusters. 

1. INTRODUCTION

One of the major goals of gene expression data analysis is to 

uncover genetic pathways, i.e., chains of genetic interactions. For 

example, a researcher may be interested in identifying the genes

that contribute to a disease. This task is difficult because

subgroups of genes display similar activation patterns only under 

certain experimental conditions. Genes that are coregulated or

coexpressed under a subset of conditions will behave differently

under other conditions. Finding genetic pathways therefore 

requires identifying clusters of genes that are coexpressed under 

subsets of conditions as opposed to all conditions.

Gene expression data is typically arranged in a data matrix, with 

rows corresponding to genes and columns to experimental 

conditions. Conditions can be different environmental conditions 

or different time points corresponding to one or more 

environmental condition. The (i,j)th entry of the gene expression 

matrix represents the expression level of the gene corresponding

to row i under the specific condition corresponding to column j.

The numerical value of the entry is usually the logarithm of the 

relative amount of the mRNA of the gene under the specific 

condition. Finding the genetic pathways is therefore equivalent to 

simultaneously clustering the rows and columns of the gene 

expression matrix. 

Cheng and Church [1] introduced the term biclustering to denote

simultaneous row-column clustering of gene expression data.

Biclustering algorithms are also known as bidimensional

clustering, subspace clustering and coclustering in other 

application fields. It should be clear that biclustering techniques

produce local models whereas clustering approaches compute

global models. If we use a clustering algorithm on the rows of the

gene expression matrix, a given gene cluster is defined using all 

the conditions. In contrast, a biclustering technique will assign a 

gene to a bicluster based on a subset of conditions. Furthermore, 

when a clustering algorithm is applied to the rows of the gene 

expression matrix, it assigns each gene to a single cluster.

Biclustering techniques on the other hand identify clusters that are

not mutually exclusive or exhaustive. A gene may belong to no 

cluster, one or more clusters [2].

In this paper we describe a novel biclustering approach for gene

expression data. We focus on biclusters with coherent evolutions, 

wherein gene expression levels stay constant or increase

coherently across the subset of conditions selected. To deal with 

the noise in the gene expression data as well as provide the 

researcher with flexibility in defining biclusters, we begin by

quantizing the entries of the gene expression matrix before 

applying our biclustering approach. We construct biclusters using 

a two step procedure. First, we identify candidate subsets of

conditions under which pairs of genes display coherent evolutions 

of expression levels. Next, we use these candidate subsets of 

conditions to construct the biclusters. We restrict our attention to

subsets with more than a pre-specified number of conditions.

To reduce the complexity of the candidate subset of condition

identification step, we generate several intermediary ordered lists 

of conditions for each gene and gene pair to allow the procedure

to discard early in the formation of candidate subsets of 

conditions, any subset that will have less than the desired

minimum number of conditions after it is fully completed. 

Furthermore, if we only seek biclusters with K or more genes, we 

show that we can reduce the complexity of the procedure by a 

factor of K with no loss of performance. This is achieved by

comparing each gene with only a subset of all genes while 

identifying candidate subsets of conditions. The benefit of this 

reduction in complexity cannot be over-emphasized: it allows the 

procedure to identify all possible biclusters in reasonable time for 

the large gene expression matrices common in practice.

Finally, a quick approximate pattern matching technique is used

to identify all genes that display coherent evolutions of expression 

levels for all the candidate subsets of conditions identified in the 

previous step. The proposed pattern matching technique is called

“approximate” because it takes into account the fact that the target 

pattern may appear in the list of ordered conditions for each gene

(row in the gene expression matrix) with random insertions of 

conditions between any two conditions in the pattern. That is, the 

approximate pattern matching technique can quickly recognize 

that the list {8, 3, 5, 4, 1, 2, 7, 6} contains the pattern {3, 1, 7}.

Note that subsets of a bicluster also form a valid bicluster. By

construction, our procedure will find the maximum size biclusters

and will not generate spurious biclusters that are proper subsets of 

other biclusters. Note also that the worst case complexity of the 

proposed biclustering procedure is approximately O(M2N) where 

M is the number of vector codewords or genes used to identify

candidate subsets of conditions and N is the number of conditions. 
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2. BICLUSTERING APPROACHES 

As mentioned in [2], there exists an extensive literature on 

biclustering techniques, e.g., [3-7]. Almost all of the proposed 

methods search for one or two types of biclusters among four 

types that have been identified in the literature [2]: biclusters with 

constant values, biclusters with constant values on rows and 

columns, biclusters with coherent values, and biclusters with 

coherent evolution.

Most techniques are greedy and will miss meaningful biclusters. 

Some, such as [8], are exhaustive. To ensure a reasonable run 

time, exhaustive techniques will restrict the maximum size of the 

bicluster. For example, [8] limits the number of genes that can 

appear in a bicluster.  

Almost all techniques use a cost function to define biclusters. For 

example, the cost function can measure the square deviation from 

the sum of the mean value of expression levels in the entire 

bicluster, and the mean values of expression levels along each 

row and column in the bicluster. In contrast, we used in our 

approach a definition of bicluster similar to that of [9]. 

Specifically, we define a bicluster as a group of genes with 

expression levels that are non-decreasing across a subset of 

conditions. As mentioned above, and unlike prior work, we 

proceed to identify all biclusters by first identifying candidate 

subsets of condition using a pre-processing of the gene expression 

data and then constructing the biclusters corresponding to these 

subsets. This approach avoids the need for exhaustive 

enumeration or heuristic cost functions that can miss some 

pertinent biclusters. 

3. BICLUSTERING WITH EARLY PRUNING 

3.1 Overview 

Our biclustering approach identifies groups of genes with 

expression levels that are non-decreasing across a subset of 

conditions. The approach is summarized in Algorithm 1 and 

performs the following steps sequentially: 

1. Quantize gene expression data. The goal of this step is to 

reduce the effect of the noise in the gene expression values. 

In our experimental work, we use the k-means algorithm to 

quantize the raw expression values when conditions 

correspond to environmental conditions only (no time data). 

The number of dictionary entries is typically selected to 

ensure that the root mean square quantization error is close 

to the root mean square noise value.   

Note that by changing the size of the dictionary it also 

possible to define hierarchical biclusters as we move from a 

dictionary of small size to one with a larger size. The 

practical significance of such an approach is still being 

studied.

When the conditions correspond to time measurements for 

different environmental conditions, we use a vector 

quantization approach to reduce the time data to the index of 

an appropriate dictionary entry. We then substitute the index 

of the dictionary entry in the cell that corresponds to the 

underlying condition. The labeling of the vector codewords 

of the dictionary is assumed to be meaningful. 

2. Re-order quantized gene expression data. The goal of this 

step is to produce several intermediate lists that help speed 

up subsequent steps. First, for each gene, we re-order the 

conditions in order of non-decreasing expression levels. 

Conditions with equal quantized expression levels are 

ordered lexicographically, i.e., a condition corresponding to 

a smaller column index appears to the left of one 

corresponding to a larger column index. This step yields a 

new data matrix in which entries correspond to conditions 

and columns to the relative order of the conditions. Thus a 

{3} in cell (4,5) indicates that the 3rd condition corresponds 

to the 5th smallest quantized expression level for gene 4. We 

will refer to the resulting matrix as the gene ordered 

condition matrix. Note that in this representation, the 

quantized expression levels are lost. Only the relative 

ordering of expression levels versus conditions is 

maintained.   

The procedure also constructs another matrix, referred to as 

the gene condition rank matrix. Rows in this latter matrix 

correspond to genes while columns correspond to conditions 

ordered lexicographically. The entries of the matrix 

correspond to the relative position of a given condition when 

conditions are ordered in order of non-decreasing expression 

levels for a given gene. Thus a {3} in cell (4,5) of the gene 

condition rank matrix indicates that the 5th condition 

corresponds to the 3rd smallest quantized expression level 

for gene 4. 

3. Identify candidate subsets of conditions. The goal of this step 

is to extract from the gene expression matrix the candidate 

subsets of conditions that will be used to define biclusters. 

This is done through pairwise examination of genes and 

extraction of ordered subsets of conditions over which the 

two genes display coherent evolutions of expression levels. 

This step is the most computationally expensive step of the 

procedure.   

To reduce the complexity of this step, we use an 

intermediary condition ordering procedure. Specifically, 

when comparing two genes, we produce for each condition a 

list of other conditions with expression levels that are larger 

in both genes than that of the condition at hand. We refer to 

the list corresponding to a given condition as the proto-

cluster corresponding to that condition. We then produce an 

intermediate list of all conditions ordered according to the 

cardinality of their corresponding proto-clusters. This pre-

processing step allows us to use a sphere decoding like 

algorithm for identifying candidate subsets of conditions 

under which the two genes display coherent evolutions of 

expression levels. As explained below, by examining the 

cardinality of the proto-clusters corresponding to various 

conditions, the algorithm can discard early in the subset 

formation stage, subsets of conditions that are unlikely to 

have more than the minimum pre-specified number of 

conditions.

 If we only seek biclusters with K or more genes, the 

complexity of this step can be reduced by a factor of K.

Specifically, we arrange all genes in a circular list and note 

that, at worst, all pairs of genes appearing in a target cluster 

will be separated by K/M other genes. Hence, we compare 

each gene only with the M/K genes that follow it. It also 

appears possible to further reduce complexity by first using a 

vector quantization step on all genes (rows of the gene 

expression matrix) and then running this step on the resulting 

vector codewords rather than the raw data. Note that this 

could potentially work because the candidate subsets of 

conditions are generated from the gene ordered condition 

matrix with no reference to the absolute value of the raw or 

quantized expression levels. Therefore, as long as the 
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distance measure and error thresholds used in the vector 

quantization routines are properly selected, this step will 

dramatically reduce the number of gene pairs that need to be 

examined to produce candidate subsets of conditions, 

without introducing the risk of missing pertinent candidate 

condition clusters. We are currently studying such an 

approach.

4. Generate biclusters. Once the candidate ordered subsets of 

conditions are identified a quick approximate pattern 

matching approach is used to uncover all genes that display 

expression levels that are non-decreasing across that ordered 

condition pattern. The complexity of this step is proportional 

to the number of biclusters that are produced by step 3.  

5.

In the remainder of this Section we describe some of the details of 

steps 3 and 4.

3.2 Candidate subset of conditions identification with 

early pruning 

The two most important procedures used to identify candidate 

subsets of conditions are the generation of condition proto-

clusters and the generation of the actual subsets of conditions. 

For a given pair of rows in the gene ordered condition matrix, we 

generate proto-clusters as follows. For each entry (condition) in 

the first row, we merge the list of conditions that appear to its 

right with that corresponding to those that appear to the right of 

the same condition in the second row. Next, using a quick sort we 

determine which conditions appear twice in the merged list. This 

analysis is then used to generate the proto-cluster matrix with 

rows and columns corresponding to conditions and entries equal 

to 0 or 1. A 1 in cell (i,j) in the proto-cluster matrix indicates that 

condition j is to the right of condition i in both genes under 

consideration. By summing up all entries along a row i, we have 

an estimate of the maximum size of any candidate subset of 

conditions that starts with condition i .

Generation of the candidate subsets of conditions starts a list with 

the condition that has the largest number of conditions to its right 

as captured by the proto-cluster matrix. Next, it scans all 

conditions in the proto-cluster corresponding to the condition 

appearing in the first position of the list in order of decreasing 

proto-cluster size. Let j denote an entry from that proto-cluster 

under consideration. For each list that has already been initialized, 

the procedure determines whether j is in the proto-clusters of all 

entries already in the list. If it is, it appends it to the list. If it is 

not, the procedure determines whether j is in the proto-clusters of 

a sublist of sequential entries in the list, starting with the first 

entry. Suppose it is and let Sj be the longest such sublist. The 

procedure then determines whether the sum of the size of Sj plus 

the size of the jth proto-cluster is larger than the minimum subset 

of conditions size specified. If it is, a new list is created by 

appending j to Sj.   

Note that if the size of the proto-cluster corresponding to j is 

larger than the minimum subset of conditions size specified, this 

step will also create a new list with j as its first element.  

Note also that determining whether j is in the proto-clusters of all 

entries already in a given list can easily be evaluated by 

multiplying all the entries corresponding to the elements of the 

list in the jth column of the proto-cluster matrix. If the product is 

1, j is indeed in the proto-clusters of all entries in the list. 

Finally, to avoid duplicates, the procedure must merge candidate 

subsets of conditions generated by comparing a given pair of 

genes with all candidates generated up to that point, eliminating 

duplicates.  

It can be shown that by construction, the procedure will generate 

subsets of maximum size. It will not generate subsets of these 

maximum size subsets, unless the larger subsets do not appear 

when comparing certain pairs of genes, while the smaller subsets 

do.

3.3 Bicluster generation and approximate pattern 

matching

Bicluster generation is relatively easy once the candidate 

condition clusters have been identified. Each candidate condition 

cluster is a list of conditions, or columns in the quantized gene 

expression level and the gene condition rank matrices. To find all 

genes that have expression levels that are non-decreasing across 

the candidate subset of conditions, we select the columns of gene 

condition rank matrix corresponding to the conditions in the 

subset under consideration. The columns are ordered in the same 

order that the conditions appear in the candidate subset. Next, the 

procedure calculates the first order difference of the entries across 

each row (gene). The resulting rows that have no negative entry 

correspond to genes in the bicluster defined by the given subset of 

conditions.

4. RESULTS

We applied the proposed biclustering technique to the yeast gene 

microarray data that can be found at [10]. The data consists of 

8224 genes and 17 conditions. Each gene expression level is 

represented as a 4 byte real number. We quantized the expression 

data using a dictionary with 200 codewords determined by the k-

means algorithm. We determined all biclusters with 7 or more 

conditions.

A complete discussion of the results can be found in [11]. 

Because of the large number of biclusters found, we will present 

here a few illustrative results that will help the reader grasp the 

magnitude of the problem and the nature of the results produced 

by the algorithm. For example, Fig. 1 shows a histogram of the 

number of conditions in the first 59,000 biclusters produced by 

the procedure. Figs. 2 and 3 show the gene expression levels of 11 

genes in a bicluster with 11 genes and 10 conditions, across all 

conditions and only the conditions in the bicluster respectively. 

Note that across the conditions in the bicluster, the gene 

expression levels are indeed non-decreasing. The behavior 

displayed in Fig. 3 is characteristic of all biclusters. 

Finally note that the proposed technique has performance 

advantages over previously reported approaches. Its running time 

is comparable to that of [4] for the user selected parameters given 

in that reference even though, unlike [4], it finds all biclusters 

with more than a given number of conditions. Its running time is 

much better than that of [1] which reportedly takes 300-400s to 

find a single bicluster.
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Input: MxN gene expression matrix

Output: Identify all biclusters with K or more genes and L or more

conditions

Do:

1. Quantize gene expression matrix

2. Reorder gene expression data 

2.1. Generate gene condition rank matrix

2.2. Generate gene ordered condition matrix

3. Arrange genes in a circular list.

4. Compare each gene in the circular list with the M/K genes that 

follow it: 

4.1. generate proto-clusters for all conditions 

4.2. scan conditions in order of  decreasing proto-cluster size 

4.2.1. Append condition to existing candidate subsets of 

conditions if feasible, or 

4.2.2. start new subset of conditions if the subset is predicted to 

have more than L conditions when completed

5. Use approximate pattern matching approach to identify all genes 

with expression levels that are non-decreasing across each candidate 

subset of conditions.

Algorithm 1: Proposed biclustering approach

Fig. 1 Histogram of number of conditions in a subset of 59,000 

biclusters.

Fig. 2: Quantized gene expression levels for genes in a 

bicluster with 10 conditions for all conditions. Different lines

correspond to different genes.

Fig 3: Quantized gene expression levels for genes in a bicluster

with 10 conditions for conditions in bicluster only. Different

lines correspond to different genes. Crosses indicate data

plotted.
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