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ABSTRACT

The ability to correlate mathematical models with experimen-
tal data is fundamental for a wide range of quantitative biology
disciplines. Modelling typically requires accurate knowledge of
kinetic rate constants, which may be extracted by parameter es-
timation using physical observations of overall system behaviors.
Synthetic gene networks have well characterized connectivity and
are easily manipulated for validation purposes, making them ideal
for studying parameter estimation techniques. Here we use two
synthetic gene networks, a transcriptional cascade and a pulse gen-
erating network, to study the efficacy of a simple statistical param-
eter fitting algorithm. The fitting was performed on experimental
data and computer-generated data (to test how well the algorithm
works under ideal conditions with perfect information). Most of
the experimental parameter estimations yielded tight ranges of ki-
netic values for both gene networks. However, the results using
simulated data indicate that the algorithm was able to provide bet-
ter parameter estimates for the pulse generating network than for
the transcriptional cascade. This is likely a result of the larger
amount of time-series data available for the pulse generator and
its greater level of phenotypical complexity, leading to tighter con-
straints for optimization. The variation in the magnitudes of the
standard deviations between parameter estimates may give an in-
dication of system sensitivity to specific kinetic rate constants. In
the future, we also plan to verify the experimental parameter esti-
mation results by constructing network variants and attempting to
predict behaviors using values obtained in this study.

1. INTRODUCTION

Parameter estimation has applications in almost any field that in-
volves quantitative analysis of biological systems, as the need to fit
mathematical models to experimental data is ubiquitous. However,
direct determination of in vivo values for biochemical parameters
is difficult and often inaccurate, and thus a computational approach
to parameter estimation has been employed for a number of bio-
logical systems [1, 2]. Here we explore the use of synthetic gene
networks for studying parameter estimation algorithms. These net-
works are especially suitable for this task because presumably their
topology is completely known and they can be easily manipulated
and reconfigured, allowing for validation of any obtained parame-
ter estimates.
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This paper applies a simple statistical parameter fitting tech-
nique to two synthetic gene networks. Initially, a cost function is
created that measures the deviation between the experimentally-
determined system data and the computer-generated simulation
data. This cost function is then minimized using a global optimiza-
tion algorithm, Adaptive Simulated Annealing [3]. The computed
cost is dependent on the set of kinetic parameters for the system.
Thus the minimum cost function provides the parameter set which
fits the model most closely with the experimental data. For well-
constrained systems, as the value of the cost function approaches
zero, the kinetic parameter estimations should ideally approach the
actual biological parameters.

Two synthetic gene networks were selected as test systems for
the parameter estimation. The first is a transcriptional cascade [4],
which is a system composed of a series of repressors. The second
is a pulse generating network [5], which employs a feed-forward
motif to produce a transient pulse of reporter gene expression in
response to a permanent increase in the concentration of an acti-
vating signal.

The efficacy of the parameter estimation technique was tested
using simulation and experimental data to determine if this method
is useful both theoretically and experimentally. The ability to ob-
tain accurate parameter estimates using this method depends on
the constraints established by the data. The system should have
relatively complex output behavior (phenotypic complexity) with
respect to the network architecture and a sufficient amount of ex-
perimental data available to optimize fitting accuracy. This param-
eter fitting approach was first applied to experimental data from the
two synthetic gene networks in order to attempt to determine the
true kinetic parameters of the systems. The experimental data was
first interpolated and smoothed in preparation for the optimiza-
tion. To analyze the potential accuracy of the fitting algorithm on
these networks and the accompanying data, a model system with
a chosen set of parameters was used to generate simulated, ideal,
noiseless data. The kinetic parameters for the system were then
randomized, and the parameter fitting technique was used in con-
junction with the simulated time-series data to attempt to recover
the original kinetic values.

In section 2, we introduce the fitting algorithm. In section 3,
we describe the two gene networks under study. In section 4, we
report and analyze the fitting results. Finally, in section 5, we sum-
marize the findings and point to future work.
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2. PARAMETER FITTING ALGORITHM

The algorithm consists of three components. The first component
processes the experimental data in an attempt to remove errors and
reduce noise. The second component consists of a cost function
that computes the deviation of simulated data from the experimen-
tal data. The third component performs global optimization using
the cost function in order to find the best possible fit to the exper-
imental data, and consequently the set of optimal kinetic parame-
ters.

2.1. Data Preprocessing

In order to increase the number of data points that can be used
for the parameter fitting, and to compensate for any missing data
points, normalized fluorescence data is interpolated using piece-
wise cubic interpolation (pchip, MATLAB 6.5, Mathworks, Nat-
ick, MA) [6]. The data is then smoothed using a hybrid Gaussian-
median filter [7]. For the experimental data reported in Section 3,
a window size of five to nine measurements (determined by trial-
and-error) was able to filter out much of the noise without losing
any relevant features of the data.

2.2. Cost Function

The deviation of the simulation data from the experimental data
(the model error) is given by the cost function:

E =

n∑
i=1

(log Y experimental
i − log Y simulation

i )2

In this study we used time-series fluorescence data for the Yi val-
ues. Since biological processes tend to have lognormal distribu-
tions [8], the logarithm of each data point was used to calculate
the error. Using logarithms also reduces the large errors typically
associated with measurements that have high values. Overall, this
least-squares approach provides a maximum-likelihood estimation
of the kinetic parameters [9].

2.3. Optimization

The cost function was minimized using Adaptive Simulated An-
nealing (ASA) [3]. ASA is an efficient simulated annealing algo-
rithm that uses an annealing schedule with exponentially decreas-
ing temperatures. In this study, the rate of annealing was decreased
manually in order to compensate for the large number of parame-
ters in the system. The exact rate of annealing was ultimately de-
termined by educated guesses and trial-and-error for each system.
The optimization was performed multiple times using a different,
randomized set of initial estimates for each iteration. The results
were then used to create a distribution for each kinetic parameter.

3. SYNTHETIC GENE NETWORKS

3.1. Transcriptional Cascades

The transcriptional cascades are networks of repressors (i.e. ge-
netic logic inverters) connected in series [4]. The simplest cascade
consists of only one inverter (Figure 1a). In this system, the tet
repressor (TetR) is constitutively expressed and regulates the en-
hanced yellow fluorescence protein (EYFP), which is under con-
trol of the PLtet−O1 promoter. TetR repression of PLtet−O1 can be
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Fig. 1. (a-c) Schematic diagrams for the three transcriptional cas-
cades. (d-e) Experimental data showing the time-series fluores-
cence responses of the networks to the addition/removal of aTc.
When aTc is added, the fluorescence of cascade 1 and 3 increases,
while cascade 2’s output decreases. This pattern is reversed when
aTc is removed from the growth medium. Cascade 1 has the quick-
est response, while cascade 3 exhibits the longest latency.

alleviated by the addition of anhydrotetracycline (aTc). In cascade
2, the lac repressor (LacI) replaces EYFP, which is now regulated
by Plac (Figure 1b). Hence, the output of cascade 2 is the inverse of
cascade 1. In cascade 3, the lambda repressor (CI) replaces EYFP,
whose expression is now regulated by the λP(R−O12) promoter.
Cascade 3’s output follows the same pattern as cascade 1: low
EYFP expression with no aTc induction and high EYFP expres-
sion with induction. However, the dynamic response of cascade
3 is delayed due to the latency incurred by the additional compo-
nents in the system, as shown in the experimental results in Fig-
ure 1d and 1e. Parameter fitting was performed on cascade 3, and
the EYFP output values of cascade 1 and 2 were used to approxi-
mate LacI and CI levels respectively.

Cascade 3 is modeled using the following Hill functions that
represent regulated gene expression and protein decay:

dT

dt
= αT − γT · T (1)

dL

dt
= α0L +

αL

1 +
(

T
βT ·(1+(A/βA)ηA )

)ηT
− γL · L (2)

dC

dt
= α0C +

αC

1 + ( L
βL

)ηL
− γC · C (3)

dY

dt
= α0Y +

αY

1 + ( C
βC

)ηC
− γY · Y (4)

The model consists of basal expression (α0L, α0C , α0Y ), protein
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Fig. 2. (a) Schematic diagram for the pulse generating network.
(b) Experimental results showing the time-series response to dif-
ferent final concentrations of AHL. (c) Experimental results show-
ing the time-series response to different rates of AHL increase, all
reaching the same final concentration of 47 nM.

synthesis (αT , αL, αC , αY ), repressor binding (βA, βT , βL, βC ),
protein decay (γT , γL, γC , γY ) and repression cooperativity (ηA,
ηT , ηL, ηC) for TetR (T), aTc (A), LacI (L), CI (C), and EYFP (Y).
TetR (equation 1) is constitutively expressed, and its repression
activity is inhibited by the addition of aTc (equation 2).

3.2. Pulse Generating Network

The pulse generating network [5] uses quorum sensing elements
from Vibrio fischeri [10] to activate the expression of both CI and
the green fluorescent protein (GFP) (Figure 2a). An acyl-homo-
serine lactone (AHL) signal diffuses through the cell membrane
and forms a complex with the constitutively expressed LuxR pro-
tein. The LuxR-AHL complex then activates the luxPR promoter
of CI and the luxPRcI-OR1 hybrid promoter of GFP. The gfp gene
is engineered with a much stronger ribosome binding site than
the cI gene, and thus GFP expression increases more quickly fol-
lowing induction. Eventually, enough CI accumulates to bind the
luxPRcI-OR promoter effectively and repress GFP expression. Th-
us, after transient GFP expression, its cytoplasmic concentration
decreases to a basal level due to protein decay. Experimental re-
sults demonstrate that the GFP pulse amplitude, duration and delay
depend on the AHL concentration (Figure 2b) and the rate at which
AHL is added to the growth medium (Figure 2c).

The pulse generating network was modeled using the follow-
ing Hill functions that represent gene activation, repression, and
protein decay:

dL

dt
= αL − γL · L (5)

dC

dt
= α0C +

αC · AηA

(θA)ηA + AηA
− γC · C (6)

dG

dt
= α0G +

(
αG · AηA

(θA)ηA + AηA

)
1

1 + (C/βC)ηC
− γG · G (7)

where

A =
L · HηH

(θH)ηH + HηH

The model includes LuxR (L), LuxR-AHL complex (A) that
is based on the AHL input (H), CI (C) and GFP (G). It consists

(a) Experimental fits (b) Simulation fits
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Fig. 3. Parameter fitting results for the transcriptional cascades.

of protein synthesis (αG, αC , αL), basal expression (α0G, α0C),
protein decay (γG, γC , γL), activation and binding of LuxR to
AHL (θH ) and of the LuxR-AHL complex to the promoters (θA),
repression (βC ), and regulatory cooperativity (ηC , ηA, ηH ). GFP
expression (equation 7) depends both on LuxR-AHL activation
(first term) and on CI repression (second term).

4. PARAMETER FITTING RESULTS

After the experimental data was preprocessed as described in Sec-
tion 2.1, the smoothed data were used to perform the parameter fit.
The parameter estimation results are shown in Figure 3a (transcrip-
tional cascades) and Figure 4a (pulse generator). The optimization
was repeated 20 times for each network in order to generate dis-
tributions for the parameters. The results are reported as the mean
value obtained ± standard deviation (circle and error bars). Most
of the estimations converged to very tight parameter value ranges.
The exceptions include α0L, βA, γT and ηA for the cascades as
well as α0C and γL for the pulse generator.
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(a) Experimental fits (b) Simulation fits
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Fig. 4. Parameter fitting results for the pulse generating network.

In order to test the accuracy of the fitting algorithm, we also
performed parameter estimation to simulated time-series data. The-
se simulations were performed using the Hill functions described
above (equations 1-4 for the cascades and 5-7 for the pulse gen-
erator) with reference kinetic parameter values as indicated by the
asterisks in Figures 3b and Figures 4b. The parameter fitting for
the pulse generator (Figure 4b) provided more accurate estima-
tions than that of the transcriptional cascades (Figure 3b). A pos-
sible cause is the lack of sufficient constraints for the transcrip-
tional cascades: 6 time-series curves were used to estimate 19 cas-
cade parameters as compared to 11 time-series curves for 14 pulse
generator parameters. Also, the pulse generator network exhibits
a greater phenotypical complexity in response to a long-lasting
change in inducer concentration, possibly providing it with tighter
constraints. Interestingly, despite the fact that many cascade pa-
rameter values were not recovered accurately, the distributions of

most of the estimations were quite tight. This observation warrants
further investigation.

5. CONCLUSION

The parameter estimation approach described here appears able to
recover kinetic parameter values reasonably well for highly con-
strained gene networks. This method’s effectiveness is hard to
measure directly, as the actual in vivo kinetic parameters are not
well known. Given the results of the parameter estimation with
simulated data, it is likely that the parameters obtained for the
pulse generating network more closely resemble the actual bio-
logical parameters than the ones obtained for the transcriptional
cascade. The accuracy of the parameter estimation obtained in
this study will be verified in future work by constructing networks
variants using elements from both systems, and using the estima-
tions computed here to predict the new systems’ behaviors. It is
also interesting to note that the magnitude of the standard devia-
tions varied significantly from parameter to parameter. It is likely
that this value provides some indication of the system sensitivity
to the given parameter, and this will be investigated in the future
as well.
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