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ABSTRACT

Molecular biology has been undergoing a revolution whose
most visible milestone is the complete sequencing of the
human genome. This revolution has been propelled by ex-
plosive advances in technology accompanied by changes in
fundamental concepts. Progress in this newly shaped field
requires innovative approaches and cross-disciplinary fer-
tilization. I highlight here several areas of research which
pose interesting challenges to the signal processing com-
munity. One promising theme for success is the synergy of
established signal processing techniques with specific char-
acteristics of molecular biology. These questions also give
the opportunity to develop new signal processing methods
inspired by biology.

1. INTRODUCTION

The substance of life are natural polymers, a modular molec-
ular structure whose combinatorial flexibility enables the
coding of information as strings of symbols, as well as al-
lowing the creation of an enormously diverse universe of
molecules. DNA molecules made of nucleotides encode and
store the information of an organism; the similar but more
volatile RNA molecules are central to the production of pro-
teins from DNA and to the regulation of this process; pro-
teins made of amino acids constitute most of the structural
and functional material in the living world; and additional
molecules, including sugars and lipids, that have vital roles
in cell structure, metabolism and other functions.

Since its early days, the central dogma of molecular bi-
ology was a linear flow process, whereby genes are tran-
scribed to messenger RNA (mRNA) which then travels to
the cell’s factory to produce proteins which are later chem-
ically degraded. This view has changed dramatically. We
know now that there is an intricate web of feedback between
various components of the above chain. Gene expression,
i.e. the transcription of genes in order to produce a protein,
is regulated in a highly complex and dynamic manner, ever
changing as function of intra- and extra-cellular signals, and

regulated by various layers of controling molecules with
multiple feedback loops.

Driving this new understanding are leap advances in tech-
nology and the experimental information that they enable to
collect. A motivating force for technological progress in the
90’s was the goal of the complete sequencing of the human
genome, and its formal attainment in 2001 is an important
milestone in biology. Most of the new technologies fall into
four categories: 1) DNA sequencers, 2) arrays that measure
mRNA levels, i.e. gene expression, 3) analytical chemistry
tools, namely mass spectrometers coupled with chromatog-
raphy for separation, and 4) molecular imaging. All these
are characterised by high through-put capability relative to
older methods. Effort is being invested now in several direc-
tions: to increase speed and volume, to decrease the price
of experiments and to develop methods that will allow for
frequent measurements in time, which could open new vis-
tas onto the dynamics of molecular systems.

Biological signal processing on the molecular and cellu-
lar levels differs from what engineers and signal processing
practitioners are used to. The reasons for this are twofold.
First, biological signals are not merely symbols that are ma-
nipulated in a computational way, rather they have a phys-
ical substrate that not only carries the signal, but is an in-
herent part of the computation itself. Molecular signaling is
achieved through the matching of three-dimensional molec-
ular structure and electric charge distribution. Second,
biological systems were not designed from start to finish
in a comprehensive manner, but are the result of the com-
plex process of evolution whereby a series of changes and
additions to the system brought it from an initial state to the
current one through a convoluted path under various forms
of selection pressure. In contrast to the usual engineering
mode of operation, the task of this field is to reverse en-
gineer and uncover a system whose working principles are
unfamiliar.

In the following sections I describe several important
areas of current research in which signal processing (SP)
plays a role. For related aspects in terms of systems and
control theory see [1].
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2. SEQUENCE ANALYSIS

The functionality of proteins is largely determined by their
three dimensional structure and electric charge distribution.
These, in turn, are dictated by the sequence of amino acids,
the “letters” that constitute a protein. Each amino acid is
encoded by a triplet of DNA bases — a codon — in the ge-
nomic sequence. Indeed, SP has often been used to study
properties of genome sequences as discrete statistical sig-
nals, using methods such as Hidden Markov Models [2].
Yet only a small fraction of the total DNA constitutes genes
that encode for proteins. Various classical SP tools have
been used to analyse DNA sequences and to predict the re-
gions of protein coding genes: Fourier analysis, joint space-
frequency (spectrogram) analysis [3], digital filters [4] and
more. A salient signature of coding regions in the genome
is a spike in the Fourier domain due to the period-three of
codons and bias in nucleotide distribution in the codon map.
Protein coding regions also exhibit long-range correlations,
revealed as 1/f power spectrum, which are assumed to be a
signature of the mechanisms by which genomes evolved.

A different approach to sequence analysis is based on
the comparison of the genomes of several species. The
goal is to find segments which are evolutionarily conserved
amongst different species to a degree that exceeds the av-
erage evolutionary sequence distance. Such segments may
then be presumed to have been retained to perform some
function, for which more direct confirmation is ultimately
required. Surprisingly, numerous conserved segments have
been recently discovered in mammalian genomes whose
function, if any, remains a mystery [5]. Some of these may
be genes that code for RNA molecules as end products,
namely RNA genes. Indeed, several long-known RNAs are
part of the protein production machinery (tRNA and rRNA).
A parallel surprising finding has been that significant por-
tions of the genome that are transcribed into RNA are never
translated to protein products and are not known RNA genes.
Called non-coding RNA (ncRNA), these molecules proba-
bly serve a diverse spectrum of vital functions, including
the complex regulation and modulation of the protein pro-
duction chain itself [6]. The abundance of ncRNA corre-
lates well with an organism’s complexity — very high in
humans, for example. This correlation has been suggested
to be a causal relation, ncRNA being responsible, in part, for
an organism’s complexity through regulatory control, thus
allowing orders of magnitude greater flexibility in the use
of an existing set of protein genes.

Current research efforts focus on charting the ncRNA
world, its interactions and functions. But ncRNA segments
are harder to tackle with standard SP methods, and their
characteristics are more elusive than for protein coding re-
gions. Absent are typical gene sequence statistics and the
protein coding signature of codon periodicity [7]. Some

functionally important ncRNA, called micro RNA (miRNA),
are very short segments only 20-25 bases long. Their brevity
defies analysis by means such as the Fourier transform.
Complicating the task, RNA molecules often fold upon them-
selves creating a secondary structure, which can be critical
for their function. This long range connection is reflected in
their sequence (the primary structure). New, more sophis-
ticated, SP tools are therefore required. One such candi-
date is a framework that generalizes HMM, called Stochas-
tic Context-Free Grammars (SCFG) [7, 8], but much more
SP development work is needed.

Substantial challenges remain also in relating amino acid
sequences to protein structure and function. In this area, a
recent attempt was made to identify repeat structural motifs
in proteins using wavelet analysis [9].

3. BIOCHEMICAL NETWORKS: SIGNALING AND
CONTROL

Given the substrate of intermolecular communication, what
is the nature of the signals at the circuit and network level
and how are they processed? The basic unit of communi-
cation is a discrete single molecular interaction, but often
signals comprise numerous such events, amounting to a de
facto continuous signal. The levels of various proteins and
metabolites are regulated and maintained at precise quanti-
ties inside cells and up to the whole organism, e.g. blood
glucose concentration. It was recently discovered that ana-
log signals can produce digital pulses in critical cellular
pathways [10]. Identifiying such new modes of cellular sig-
nal processing and deciphering the mechanisms by which
they are realised in biochemical circuitry constitute fertile
area for research. A novel approach in this direction is to
construct cellular communication systems by design and to
study their behaviour under controlled conditions [11]. This
enables the estimation of system parameters.

Molecular signals are not perfect — stochasticity in
molecular processes and variability in cellular conditions
confound signals with noise, for example in gene expres-
sion and protein production [12]. Stochasticity is accentu-
ated in such processes by the fact that only few molecules
may be involved. Despite the ubiquity of molecular noise,
organisms are not passively subject to its mercy, but rather
evolved mechanisms to control and attenuate it. Correction
of errors in DNA replication down to the average rate of
10−9 nucleotide is well known. Various mechanisms have
been proposed and studied for attenuation of noise in bio-
chemical circuits such as cascades [13] and gene expres-
sion in genetic oscillators [14]. An intriguing possibility
has been raised that the effective amount of noise in gene
expression and protein production are selected for evolu-
tionarily depending on how vital the protein is to the organ-
ism’s survival [15]. It is also thought that stochasticity may
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confer advantage in some cases at the population level [16].
An example of noise analysis in simple circuits using the
frequency domain of the system is given in [17].

Above the small circuit level we are interested in identi-
fying complete operational modules of regulatory networks
of genes and their expression, and of biochemical networks.
These are often extracted from broad profile measurements
of gene expression, proteins and metabolites. Experimen-
tal data are usually organized in a matrix of varibles (e.g.
genes) vs. samples, where samples may be representatives
of a population or taken in different conditions. A promis-
ing family of methods, called biclustering, finds meaningful
submatrices in the data matrix [18]. These subclusters cor-
respond to genes that are expressed similarly in a subgroup
of samples or conditions. Some biclustering algorithms also
account for issues of statistical significance [19]. Another
approach is to use prior information about a network’s struc-
ture [20].

The final goal is the reconstruction of the complete global
network of interaction between genes, proteins and metabo-
lites. An extensive literature exists on the subject, especially
in the context of gene regulatory networks. Two examples
are Relevance Networks in gene expression [21] and Corre-
lation Networks for integrative systems biology [22].

4. STATISTICS AND DATA ANALYSIS

Analysing experimental data about systems relies heavily
on statistics. Numerous measurements are collated and
passed through statistical tests, such as t-test and ANOVA.
The fundamental difficulty of the field is that in many exper-
iments the number of measured variables is several thou-
sands to tens of thousands, while the number of samples
is only several dozen at best. The problem exhibits itself
in various ways. Univariate hypothesis testing is guaran-
teed to result in numerous false positives because of the
high number of multiple tests. Although these can be con-
trolled by severely restricting the acceptance level in multi-
ple tests, the challenge is to do so without discarding most
of the real information in the data. False Discovery Rate
(FDR) correction is an attempt to balance these two require-
ments. Classification and prediction based on such severe
undersampling faces extreme overfitting to the sample set at
hand [23,24]. Similar problems afflict feature selection, i.e.
the identification of subsets of variables which are thought
to be meaningful in a process. Various attempts are being
made to overcome these problems, for example by finding
the relation between sample size and optimal number of
features for various classifiers and class distributions [25].
Applying methods for dealing with multiple tests, such as
FDR, to correlation structure of gene sets (called gene co-
expression) [26] enables the reconstruction of networks, as
in [21, 22].

As basic principles of molecular systems are gradually
elucidated, temporal aspects are becoming more important
to fully understand their dynamic operation [27]. This re-
quires the development of suitable analysis methods [28].

5. TECHNOLOGICAL MEANS

The previous sections dealt with primary scientific ques-
tions in the field. In order to obtain useful data to study
them, various technological means are used, many of which
are still in the process of development. SP is essential in
transforming raw instrument read-out into useful data. Ar-
rays that measure gene expression levels (mRNA) are typ-
ically photographed and initially analysed with image pro-
cessing steps. Statistical SP procedures are then applied to
data before it can be used. These include the identification
and removal of noise and out-lier data, scaling and more.

Deriving information by analytical chemistry tools for
small and large molecules (metabolites and proteins) with
mass spectrometers requires a host of steps: separating spec-
trometric peaks of individual molecules, alignment of peaks
of the same molecule in different spectra (coming from dif-
ferent biological samples), pattern matching of measured
spectra to spectra in data bases, and data normalization.

Signal processing will also play a critical role in com-
pletely new technologies. Following the revolution of med-
ical imaging by CT, MRI and PET, new ways are being de-
veloped now to image tissues and organs on the molecular
level. Notable among the Molecular Imaging technologies
is the innovative use of mass spectrometers directly onto
tissue slices, instead of on chemically processed samples,
thus preserving tissue integrity. Unprecedented spatiotem-
poral mapping of protein abundance is achieved on full or-
gan scale and at 50µm resolution [29]. This method, which
is still in its infancy, enables detailed study of the dynamics
of proteins in tissues and organs.

6. CLOSING REMARK

A key lesson from the application of signal processing to
molecular biology has been that progress is achieved by
astute adaptation of established techniques to the specific
characteristics and pecularities of biological phenomena.
The field being young, however, there is ample room for
developing novel signal processing methodologies and, in
return, having signal processing practice in other engineer-
ing domains be inspired by that which is learned from the
natural world.

7. ACKNOWLEDGEMENT

I thank Noam Shoresh for fruitful discussions on the subject.

V - 763

➡ ➡



8. REFERENCES

[1] Eduardo D. Sontag, “Some new directions in control theory
inspired by systems biology,” Systems Biology, vol. 1, no. 1,
pp. 9–18, 2004.

[2] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme
Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids, Cambridge Univer-
sity Press, 1998.

[3] David Sussillo, Anshul Kundaje, and Dimitris Anastassiou,
“Spectrogram analysis of genomes,” EURASIP J. on Applied
Signal Processing, vol. 2004, no. 1, pp. 29–42, 2004.

[4] P. P. Vaidyanathan and Byung-Jun Yoon, “The role of signal-
processing concepts in genomics and proteomics,” J. of the
Franklin Inst. Eng. Appl. Math., vol. 341, no. 1-2 (Special
Issue on Genomics), pp. 111–135, 2004.

[5] Daniel J. Gaffney and Peter D. Keightley, “Unexpected con-
served non-coding DNA blocks in mammals,” Trends Genet.,
vol. 20, no. 8, pp. 332–7, Aug. 2004.

[6] John S. Mattick, “Non-coding RNAs: the architects of eu-
karyotic complexity,” EMBO Rep., vol. 2, no. 11, pp. 986–
991, 2001.

[7] Sean R. Eddy, “Computational genomics of noncoding RNA
genes,” Cell, vol. 109, no. 2, pp. 137–140, Apr. 2002.

[8] Robin D. Dowell and Sean R. Eddy, “Evaluation of several
lightweight stochastic context-free grammars for RNA sec-
ondary structure prediction,” BMC Bioinformatics, vol. 5,
no. 1, 2004.

[9] Kevin B. Murray, Denise Gorse, and Janet M. Thornton,
“Wavelet transforms for the characterization and detection of
repeating motifs,” J. Mol. Biol., vol. 316, no. 2, pp. 314–363,
2002.

[10] Galit Lahav, Nitzan Rosenfeld, Alex Sigal, Naama Geva-
Zatorsky, Arnold J. Levine, Michael B. Elowitz, and Uri
Alon, “Dynamics of the p53-mdm2 feedback loop in indi-
vidual cells,” Nat. Gen., vol. 36, no. 2, pp. 147–150, 2004.

[11] Subhayu Basu, Rishabh Mehreja, Stephan Thiberge, Ming-
Tang Chen, and Ron Weiss, “Spatiotemporal control of gene
expression with pulse-generating networks,” Proc. Natl.
Acad. Sci. USA, vol. 101, no. 17, pp. 6255–6360, Dec. 2004.

[12] Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia, and
Peter S. Swain, “Stochastic gene expression in a single cell,”
Science, vol. 297, pp. 1183–6, 16 August 2002.

[13] Mukund Thattai and Alexander van Oudenaarden, “Attenu-
ation of noise in ultrasensitive signaling cascades,” Biophys.
J., vol. 82, no. 6, pp. 2943–2950, June 2002.
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