
Equation Based LDPC Decoder for Intersymbol Interference 

Channels

Zining Wu and Gregory Burd

Marvell Semiconductor, 700 First Ave., Sunnyvale, CA 94089

{zwu,gburd}@marvell.com

Abstract - The application of LDPC code to intersymbol

interference (ISI) channels requires efficient soft decoding

methods for ISI channel as well as outer LDPC code. We

introduce a fully pipelined turbo equalization architecture

that combines soft decoders for channel and LDPC code.

This equation based LDPC decoder uses signed sum prod-

uct (SSP) decoding algorithm, and stores soft information

for each equation, in contrast to each edge in conventional

LDPC decoders. The memory size of LDPC decoder is

greatly reduced, and the delay of LDPC decoder is

absorbed by the delay of soft channel detector.

I  INTRODUCTION

The invention of turbo codes [1] and the re-discovery of

low-density parity-check (LDPC) codes [2] lead to

increased efforts in utilizing iterative system in various

applications. Since plenty of communication channels can

be modeled as intersymbol interference (ISI) channels, for

example the magnetic recording channel, application of

iterative codes to ISI channels is of great interest. Combin-

ing iterative codes with ISI channels was first introduced in

[3] under the name of “turbo equalization”. The key obser-

vation in turbo equalization is that ISI channel can be

treated as rate-1 convolutional code, therefore it can be eas-

ily decoded by soft-input soft-output (SISO) algorithms

and iterated with an outer convolutional or LDPC decoder. 

Turbo equalization is well studied and understood (see [4]

and references therein). However, hardware implementa-

tion of turbo equalizer is a challenging task. Soft decoders

for ISI channels, such as BCJR [7], soft-output Viterbi

algorithm (SOVA) [8], and decision-aided equalization

(DAE) [9], are inherently sequential decoders, while LDPC

decoder is preferably implemented in a parallel or semi-

parallel architecture. Consequently, large memory is

required to store intermediate soft information in order to

concatenate LDPC decoder with soft channel decoder,

making memory access the bottleneck in designing high

speed turbo equalizers.

In this paper, we propose a new equation based LDPC

decoder that is well suited for concatenation with ISI chan-

nels. In contrast to the simplifications in [5] and [6], where

memory size is reduced by breaking down each iteration to

several “sub-iterations” and storing soft information only

for the latest sub-iteration, our method maintains the integ-

rity of each iteration and produces a lower error floor. We

consider a typical system as in Fig. 1, where the ISI channel

is treated as a rate-1 inner code and its decoder is iterated

with the LDPC decoder. The proposed LDPC decoder

stores soft information per equation, instead of per edge in

the factor graph. This memory arrangement greatly reduces

size and access speed requirements. Moreover, equation

based LDPC decoder operates in a serial fashion and is

fully integrated with soft decoder for ISI channel. There-

fore, the LDPC decoder does not incur additional delay. 

The rest of the paper is organized as follows. Section II

reviews LDPC decoding algorithms. Section III discusses

several candidate soft decoders for ISI channels. Section IV

introduces the equation based iterative decoder for ISI

channels. Section V provides concluding remarks.

II  LDPC DECODING ALGORITHMS

LDPC codes can be easily decoded using sum product

algorithm, which is summarized below for completeness

(Fig. 2).

Suppose LDPC code is represented by a bi-partite graph.

Each information bit corresponds to a bit node, and each

check equation corresponds to a check node in the graph.

Bit nodes are indexed by l, and check nodes are indexed by

m. In the sum product decoding algorithm, there are four

types of soft information circulating in the decoder: 

1. : soft information from the channel a posteriori

probability (APP) decoder, one for each bit. Channel 

APP decoders can be BCJR, SOVA or DAE [7]-[9]. 

2. : soft information from bit node l to equation 

node m, one for each edge.

3. : extrinsic information from equation node m to 

bit node l, one for each edge.

4. : overall soft information after each iteration, 

one for each bit.

llrPl

llrQlm

llrRml

llrAPPl

V - 7570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



Each iteration of LDPC decoding consists of three steps

(superscripts denote iteration numbers):

1. Each bit calculates the information  that it passes 

to the connecting equations, which is the sum of the 

extrinsic information  from the previous iteration 

with the channel information  from the current 

iteration, excluding the extrinsic information from the 

same equation, i.e.,

. (1)

2. Each check equation (each row in the parity-check 

matrix) calculates the extrinsic information for each 

involved bit.  denotes the “LLRXOR” operation 

discussed below.

. (2)

3. Each bit calculates the overall soft information by sum-

ming up all the 's and the 's,

. (3)

The LLRXOR operation in (2) is defined as

(4)

where  can be implemented by a look-up table.

The operation in (4) requires five additions, two absolute

values and two table look-ups. This procedure is referred to

as the “sum product” (SP) algorithm.

The LLRXOR operation can be further simplified by elimi-

nating table look-ups, i.e. omitting the  term in

(4), yielding the following approximation for the LLRXOR

operator:

LLRXOR(y,z) -sign(y)sign(z)min(|y|,|z|). (5)

(5) requires only absolute value, sign, and comparison

operations. The simplification to (5) is referred to as the

“signed sum product” (SSP) algorithm.

III  APP DECODING ALGORITHMS FOR ISI 
CHANNELS

Soft-input soft-output (SISO) algorithms for ISI channels

include the BCJR algorithm [7], SOVA [8], DAE [9], etc.

The original BCJR algorithm is a maximum a posteriori

probability (MAP) algorithm and requires a forward itera-

tion and a backward iteration, whereas SOVA and DAE are

simplified APP decoders and only require sequential pro-

cessing to obtain the soft information for each bit. In our

concatenated systems, we use SOVA and DAE for channel

SISO detection. To standardize the notation independent of

the soft channel decoding algorithm, we assume that soft

channel detectors take in samples, 's and

's, and outputs 's (see Fig. 3).

IV  EQUATION BASED LDPC DECODER

Consider a regular LDPC code with block length L and col-

umn weight M. A conventional implementation of SP or

SSP requires L units of memory to store 's and ML

units of memory to store 's. 's and 's

can be computed on the fly and does not need to be stored.

Soft information is updated edge by edge within each itera-

tion [5][6]. We call this implementation the “edge based”

decoder, which can be implemented in either serial or par-

allel manner. Parallel architecture can achieve higher speed

while serial architecture minimizes hardware size. For ISI

channel serial implementation is preferred because soft

information from the channel comes sequentially. At each

iteration, edge based decoder computes  according

to (1) after channel decoder calculates . The decoder

then computes  according to (2). In a serial imple-

mentation, edge based decoder requires roughly L cycles

per iteration for soft channel decoding and calculating

, and another L cycles for calculating  and

. Therefore the total delay of channel and LDPC

decoders is 2L times the number of iterations. It should be

noted that the amount of memory needed to store soft infor-

mation in a fully pipelined decoder is proportional to the

decoder latency.

When signed sum product algorithm is used to decode

LDPC codes, the magnitudes of the extrinsic information

conveyed in each equation are determined by the two llrQ's

with the smallest amplitudes. Other llrQ's only contribute

to the sign of the extrinsic information. 

Based on the observation that only two llrQ magnitudes are

needed, we propose an equation based architecture that

eliminates the llrR memory and cuts the decoding delay in

half. At iteration i, for equation m, there is only a need to

store two smallest llrQ magnitudes (denoted min1i
m and

min2i
m), the signs for all the 's, the position of

min1i
m (denoted Ii

m), and the overall sign of the equations

(denoted ). Then, 's can then be calculated on the

fly from the stored information as follows:

, (6)

where  is the sign of the mth

equation at the end of ith iteration.

llrQlm

llrRml

llrPl

llrQ
i
lm llrP

i
l llrR

i 1–
m l

m m

+=

llrR
i
ml llrQ

i
l m

l l

=

llrRml llrPl

llrAPP
i
l llrP

i
l llrR

i
ml

m

+=

LLRXOR(y,z) e
y

e
z

+log 1 e
y z+

+log–

max y z 1 e
y z––

+log

max y z 0+ 1 e
y z+–

+log––

+

=

=

1 e
–

+log

1 e
–

+log

llrAPPl

i 1–

llrPl

i 1–
llrPl

i

llrPl

llrRml llrQlm llrAPPl

llrQ
i
lm

llrP
i
l

llrR
i
ml

llrQ
i
lm llrR

i
ml

llrAPPl

i

llrQlm

s
i
m llrR

i
ml

llrR
i
ml

s
i
m– sign llrQ

i
lm min1

i
m, if l I

i
m

s
i
m– sign llrQ

i
lm min2

i
m, otherwise

=

s
i
m sign llrQ

i
lm–

l

–=

V - 758

➡ ➡



In the new equation based architecture, time cycles are allo-

cated exclusively for the channel decoding, LDPC decod-

ing is done on the fly. As soon as the first iteration channel

SISO decoder outputs  for a given bit l, it is used to

obtain  utilizing (1).  in turn is sent to update

min11
m, min21

m, I1
m, and s1

m for each check node con-

nected to the current bit. Once the channel detector finishes

processing the entire codeword, we have all necessary

information to compute 's, and to perform the sec-

ond iteration channel decoding. On the second sweep

through the bits, iterative decoder first obtains 

using (6). The result is then immediately sent to the SISO

channel detectors as the a priori information. Once 

becomes available (after a small channel detector latency),

 is computed using (1) and sent to update min12
m,

min22
m, l2m, and s2

m for the connected check nodes. The

rest of iterations proceed in a similar fashion.

The equation based arrangement takes advantage of both

the sparseness of the parity-check matrix and the simplicity

of the SSP decoding. The memory saving offered by equa-

tion based LDPC decoder is proportional to the code rate of

LDPC code. This is particularly advantageous for the mag-

netic recording applications where high rate codes are pre-

dominantly used.

Equation based LDPC decoder architecture is now going to

be further illustrated on a simple (L,k) product code whose

parity check matrix is given by (7),

, (7)

It is easy to see that H has no short cycles (girth>4), and a

column weight of 2. The minimum distance is 4. Fig. 4

shows a fully pipelined architecture for iterative LDPC

code decoder. Memories for min1, min2, and llrP are ini-

tialized to 0. The equation based SSP circuit performs the

following steps for each iteration (starting from “Eq. RAM

0” in Fig 4):

1. At each time clock, 's are calculated using (6) 

by the “llrR calculation” block.

2. Each bit calculates the overall soft information 

 by summing up all the 's and 

 as an input to the channel SISO detector. 

3. The channel SISO detector calculates . 

4. Each bit calculates  that it passes to the connect-

ing equations according to (1).

5. Each bit stores the signs of the 's in “llrQ sign 

RAM”.

6. Each bit updates the equation information (min1, min2,

I, and s) for the two equations involving the current bit. 

This operation is performed by the “Equation update” 

block. 

It is obvious that steps 1-6 for each iteration can be finished

in the L clock cycles that is needed for channel SISO

decoding, i.e., there is no additional clock cycles required

for LDPC decoding.

Fig. 5 is a block diagram of a memory arrangement of the

decoder in accordance with the equation based decoding

method. As shown therein, memory has a partition for each

equation, and each equation has a partition for storing mag-

nitude data (min1 and min2), index data (I), and sign data

(s). The equation memory blocks are arranged into two tiers

according to the structure of the parity check matrix (7),

one for row parities, and one for column parities. There are

two copies of memory for each equation - one for the cur-

rent iteration and one for the previous iteration. These two

copies are used by the “equation update” block and the

“llrR calculation” block in a ping-pong fashion. The MUX

controls which memory to be read from and which memory

to be written into according to an iteration number counter.

Equation based LDPC detector needs L units of memory to

store 's, ML bits to store the sign of llrQ's, and (L-k)

units of memory to store equation based statistics. For high

rate codes, (L-k) is small compared to the block size L.

Therefore, memory requirement for the equation based

decoder is dominated by the channel soft information llrP.

Besides, since the turbo equalization latency is reduced

from 2L to L clock cycles per iteration, the overall size of

equation based LDPC decoder is much smaller than that of

conventional edge based decoder.

At the end of each iteration, the parity equations are

checked. If all the parity equations are satisfied, we con-

sider the decoding successful and start to output hard deci-

sions that are derived from last iteration’s 's.

Checking the equations is easy, because the overall sign for

an equation, , is -1 when equation m is satisfied, and is 1

otherwise. Therefore, there is no additional memory

required for equation checking. 

V  CONCLUSION

The key aspects of our equation based LDPC decoder are

storing and updating soft information according to equa-

tions, and computing soft information for each edge on the

fly. Doing so reduces the memory size of the LDPC

decoder, especially when high rate LDPC codes are used.

llrP
1

l

llrQ
1

lm llrQ
1

lm

llrR
1

ml

llrR
1

ml

llrP
2

l

llrQ
2

lm

H

1 1

1 1

1 1

1 1 1

1 1 1

L

L k– 1+=

llrR
i 1–

ml

llrAPP
i 1–

l llrR
i 1–

ml

llrP
i 1–

l

llrP
i
l

llrQ
i
lm

llrQ
i
lm

llrP

llrAPPl

s
i
m

V - 759

➡ ➡



Moreover, the proposed LDPC decoder does not require

additional latency beyond what the channel SISO detector

needs. Therefore, the equation based decoder is very effi-

cient for decoding LDPC codes on ISI channels. 

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near 

Shannon limit error-correcting coding and decoding: 

Turbo codes,” in Proc. IEEE Int. Conf. on Communica-

tions, Geneva, Switzerland, May 1993.

[2] D. J.C. MacKay, “Good error-correcting codes based on 

very sparse matrices”, IEEE Trans. Inform.,vol 45, pp. 

399-431, Mar. 1999. 

[3] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization 

over a frequency selective channel,” in Proc. Int. Symp. 

Turbo codes, Brest, France, Sept. 2000, pp. 371-374.

[4] M. Tuchler, R. Koetter, and A.C. Singer, “Turbo Equal-

ization: Principles and New Results”, IEEE Trans. 

Commun., vol 50, pp 754-767, May 2002.

[5] Y. Engling, P. Pakzad, B. Nikolic, and V. Anantharam,

“VLSI architectures for iterative decoders in magnetic 

recording channels,” IEEE Trans. Mag., vol 37, pp 748 

- 755, Mar. 2001.

[6] M. M. Mansour and N.R. Shanbhag, “High-Throughput 

LDPC Decoders,” IEEE Trans. VLSI Sys., vol 11, pp 

976-996, Dec. 2003.

[7] L.R.Bahl et al, “Optimal decoding of linear codes for 

minimizing symbol error rate,” IEEE Trans. Inform.,

vol. IT-20, pp. 284-287, Mar. 1974.

[8] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with 

soft-decision outputs and its applications,” In Proc. 

IEEE Global Telecomm. Conf.,1989, pp 1680-1686.

[9] Z. Wu, Coding and Iterative Detection for Magnetic 

Recording Channels, Kulwer Academic Publishers, 

2000.

[10] Z. Wu and G. Burd, “LDPC Decoder and Method 

Thereof,” US Patent application, filed 2000.

FIGURE 1. LDPC code with ISI channel

FIGURE 2. Factor graph and sum product decoding

FIGURE 3. Generic channel SISO decoder

FIGURE 4. Equation based LDPC decoder

FIGURE 5. Equation memory arrangement 

LDPC

Enc.

SISO

Channel

decoder

ISI

channel

SISO

LDPC

decoder

llrP

llrQ
11

llrQ
21

l=1 2 3 4 5

m=1 2

llrR
13

Soft

Channel

Detector

llrPi
l

samples

llrAPPi-1
l

llrPi-1
l

llrP RAM

Sample 

RAM

Eq. RAM 1

min1, min2 

I, s

Equation

update

Eq. RAM 0

min1, min2 

I, s

llrQ

calculation

llrQ

calculation

illrPillrP

Channel

SISO

1illrPllrQ

sign

RAM

illrQillrQ

llrR

calculation

1illrR llrAPP

calculation

1illrAPP

1illrP

llrAPP

calculation

1illrAPP

llrAPP

calculation

1illrAPP

llrAPP

calculation

1illrAPP

llrAPP

calculation

1illrAPP

1illrP

Equation

Tier 1

(row check)

Equation

Tier 2

(column check)

E
q

u
a

ti
o

n

U
p

d
a

te

E
q

u
a
ti

o
n

U

p
d

a
te

llrR

Calc

llrR

Calc

0

1

0

0

1

1

1

1
0

0

0

Iteration number

counter

1

min1 min2 s I

V - 760

➡ ➠


