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ABSTRACT

We explore the application of a homotopy continuation-based
method for sparse signal representation in overcomplete dictio-
naries. Our problem setup is based on the basis pursuit frame-
work, which involves a convex optimization problem consisting
of terms enforcing data fidelity and sparsity, balanced by a regu-
larization parameter. Choosing a good regularization parameter
in this framework is a challenging task. We describe a homo-
topy continuation-based algorithm to efficiently find and trace all
solutions of basis pursuit as a function of the regularization pa-
rameter. In addition to providing an attractive alternative to ex-
isting optimization methods for solving the basis pursuit problem,
this algorithm can also be used to provide an automatic choice for
the regularization parameter, based on prior information about the
desired number of non-zero components in the sparse representa-
tion. Our numerical examples demonstrate the effectiveness of this
algorithm in accurately and efficiently generating entire solution
paths for basis pursuit, as well as producing reasonable regulariza-
tion parameter choices. Furthermore, exploring the resulting so-
lution paths in various operating conditions reveals insights about
the nature of basis pursuit solutions.

1. INTRODUCTION

Representing data in the most parsimonious fashion in terms of re-
dundant collections of generating elements is at the core of many
signal processing applications. However, finding such sparse rep-
resentations exactly in terms of overcomplete dictionaries involves
the solution of intractable combinatorial optimization problems.
As a result, work in this area has focused on approximate meth-
ods, based on convex relaxations [1] or greedy methods, lead-
ing recently to the development of conditions under which such
methods yield maximally sparse representations [2–6]. One such
method, involving a convex �1 relaxation, is basis pursuit [1]. Its
noisy version (allowing for some residual mismatch to data) poses
the following optimization problem:

J(x; λ) = ‖y − Ax‖2
2 + λ‖x‖1, A ∈ R

M×N (1)

where y denotes the data (signal whose representation we seek),
A is the overcomplete representation dictionary (M < N ), and
λ ≥ 0 is a scalar regularization parameter, balancing the tradeoff
between sparsity and residual error. For a fixed λ, the problem can
be solved by finding the minimizer x̂ of (1), using e.g. quadratic
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programming. However choosing the regularization parameter is
a difficult task, and some prior knowledge, either of the desired
residual error (e.g. based on the noise level), or of the underlying
sparse vector x, has to be exploited. One piece of information
about x might be the number of non-zero components. However,
even if such information is available, how to use it directly in the
basis pursuit framework is not straightforward.

Motivated by these observations, we describe a computation-
ally efficient approach for sparse signal representation based on
the homotopy continuation method of [7]. A related method has
also been developed in [8], and has been linked to greedy meth-
ods. The main focus in [7] is the solution of an overdetermined
least-squares problem with an �1-norm constraint. We are mostly
interested in the unconstrained formulation in (1), in the under-
determined (M < N ) case. In particular, we propose a simple
algorithm to find and trace all solutions x̂(λ) of basis pursuit as a
function of the regularization parameter λ. The function J(x; λ)
is convex and hence continuous, but it is not differentiable when-
ever xi = 0 for some i, due to the term ‖x‖1 =

P
i
|xi|. The

main idea of the approach is that ‖x‖1, when restricted to the sub-
set of non-zero indices of x, is locally a linear function of x. This
allows one to solve the local problems (for a limited range of λ)
analytically, and piece together local solutions to get solutions for
all regions of λ. The resulting algorithm generates solutions for
all λ with a computational cost that is comparable to solving basis
pursuit with quadratic programming for a single λ. This procedure
can also be used to select the regularization parameter λ based on
information about the number of non-zero components in x. In
particular, a reasonable choice is the minimum λ that produces
the desired number of non-zero components in x̂(λ). Our numer-
ical experiments demonstrate the effectiveness of this algorithm
in generating the solution path accurately. Furthermore, exploring
the structure of such solution paths reveals useful insights about
the sensitivity of the problem to measurement noise, as well as to
the nature of the overcomplete dictionary used.

2. NON-SMOOTH OPTIMALITY CONDITIONS

First we review non-smooth optimality conditions for convex func-
tions and their implications for the problem in (1).

The subdifferential of a convex function f : R
N → R at

x ∈ R
N is defined as the following set:

∂f(x) = {ξ ∈ R
N |f(y) ≥ f(x) + ξ

T (y−x) ∀ y ∈ R
N} (2)

Each element of ∂f(x) is called a subgradient of f at x. The
subdifferential is a generalization of the gradient of f . In fact, if f

V - 7330-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



is convex and differentiable at a point x then

∂f(x) = {∇f(x)} (3)

i.e. the subdifferential consists of a single vector, the gradient of f

at x (the only subgradient is the gradient).
The non-smooth optimality conditions state that the subdiffer-

ential of f at x has to contain the 0-vector for f to achieve a global
minimum at x:

Theorem 1 ( Non-smooth optimality conditions) If
f : R

N → R is convex, then f attains a global minimum at x if
and only if 0 ∈ ∂f(x).

The subdifferential of g(x) = ‖x‖1 is the following set:

u(x) � ∂g =

8>>>><
>>>>:

u ∈ R
N

˛̨̨
˛̨

ui = 1 if xi > 0

ui = −1 if xi < 0

ui ∈ [−1, .., 1] if xi = 0

9>>>>=
>>>>;

(4)

The interesting part of this subdifferential is when some of the
coordinates are equal to 0, where g is non-differentiable. Then ui

is not a scalar, it is a set.
The subdifferential of f(x) = J(x; λ) from (1), for a fixed

λ = λ̃, is the set

∂f =
n

2A′(Ax − y) + λ̃u(x)
o

(5)

where u(x) is defined above in (4). Suppose that x̃ = arg minx J(x; λ̃).
Then, in order to have 0 ∈ ∂f(x̃), the following equation must
have a solution for some vector ũ ∈ u(x̃):

2A′
Ax̃ + λ̃ũ = 2A′

y (6)

Let us consider an arbitrary vector x more closely. Let Ion be
the support of x, i.e. the set of indices i where xi �= 0. Also let
Ioff be the complement of Ion, i.e. Ioff = {i | xi = 0}. Put
all entries xi on the support of x into a vector xon, and the ones
off the support of x into xoff (that makes xoff = 0). Assume,
without loss of generality, that x′ = [x′

on , x′

off ], i.e. the non-
zero components appear first. Let us split u in the same fashion,
according to which indices lie on or off the support of x, into uon

and uoff . Also, let us split the square N ×N matrix G = 2A′A

into 4 parts (there are 4 possibilities of whether the row-index and
the column-index correspond to our sets Ion and Ioff ): Gon,on,
Gon,off , Goff,on, Goff,off . Due to symmetry of the matrix G,
we have Gon,off = G′

off,on. To simplify the notation further, let
us use Φ = Gon,on, Ψ = Gon,off , and Υ = Goff,off . Finally,
let z = 2A′y, and split z in the same way into zon and zoff .

Returning to our fixed x̃ and λ̃, using our new notation, we
can rewrite (6) as

„
Φ Ψ
Ψ′ Υ

« „
x̃on

0

«
+ λ̃

„
ũon

ũoff

«
=

„
zon

zoff

«
(7)

Suppose that we know x̃. The elements of ũon are all determined:
they are equal to 1 or −1, corresponding to the signs of elements
of x̃on. To determine ũoff , split equation (7) into two parts to get:

Φx̃on + λ̃ũon = zon (8)

Ψ′
x̃on + λ̃ũoff = zoff

Thus we can find ũoff = 1

λ̃
(zoff − Ψ′x̃on). Since x̃ is optimal

(for some λ = λ̃), the elements of ũoff are constrained to lie in
[−1, 1].

3. FINDING SOLUTIONS FOR ALL λ

In the last section we characterized ũ given that we know x̃, the op-
timal solution for a particular λ̃. Now starting with λ = λ̃, we in-
crementally change λ to find and trace optimal solutions x̂(λ) for
all λ. This forms the basis of the homotopy continuation method.

Suppose that x̃ is the unique solution for λ̃ (where λ̃ > 0),
then from (8) we have1

x̃on = Φ−1(zon − λ̃ũon) (9)

ũoff =
1

λ̃
(zoff − Ψ′Φ−1

zon) + Ψ′Φ−1
ũon (10)

No elements of x̃on are equal to zero, hence there exists a range of
λ, which includes λ̃, for which all entries of xon(λ) = Φ−1(zon−
λũon) will be nonzero. That means that throughout this range the
support of x(λ) will not be reduced. By larger changes in λ we
can force one of the components of xon(λ) to zero. In addition,
there exists a range of λ, which includes λ̃, for which uoff (λ) =
1

λ
(zoff −Ψ′Φ−1zon)+Ψ′Φ−1ũon does not become equal to 1 in

absolute value, i.e. all entries of uoff (λ) belong to [−1, 1]. In the
intersection of these two ranges of λ, the vectors x(λ) and u(λ)
will satisfy the non-smooth optimality conditions for J(x(λ); λ),
hence x̂(λ) = x(λ) for λ in the above region. The vector x(λ)
is obtained by putting entries of xon(λ) into the corresponding
entries x̂i(λ), for i ∈ Ion, and zeros for i ∈ Ioff . The vector
u(λ) is obtained by putting ũon (which does not change while λ

is in the above region) into the components with i ∈ Ion, and
uoff (λ) for i ∈ Ioff .

In this way, we obtain all solutions for some range of λ’s. The
range can be easily calculated by solving for critical values of λ

closest to λ̃, which make an entry of x̂on(λ) turn zero, or an entry
of uoff (λ) reach unity in absolute value. This requires solving a
set of scalar linear equations.

Now the next step is to find the support of x̂(λ), as λ leaves
the region. We only need to search locally, since x̂(λ) is contin-
uous for λ > 0 [7]. For the case where changing λ forces one
component of xon(λ) to zero, recalculating the support is trivial:
we remove the index i for which xi was set to zero from Ion, and
put it into Ioff . For the case where an entry of uoff (λ) becomes
equal to 1 in absolute value, we transfer the corresponding index i

from Ioff into Ion. The corresponding index of uon is set to the
sign of the entry of uoff (λ) which reached 1 in absolute value.
Thus, after recomputing the support and the sign-pattern of so-
lutions, we can proceed in the same fashion as before, computing
the boundary of the new region for λ, finding the optimal solutions
inside it, and entering a new region.

To start the algorithm, it is easiest2 to consider λ0 = ∞, or
equivalently λ0 = 2‖A′y‖∞, which satisfies x̂(λ) = 0 for λ >

1In this case, it can be shown that the matrix Φ is invertible.
2Another possibility is to start with λ0 = 0, and increase it until x̂(λ)

becomes 0. Assuming that A has full row rank, this starting point requires
the solution of the problem: min ‖x‖1 subject to y = Ax. The solution
corresponds to λ = 0+. When λ = 0 there exist multiple solutions if A

has a nontrivial null-space. Solving the linear program picks the sparsest
solution, which lies on the solution path x̂(λ).
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λ0. Then, following the procedure described above, the algorithm
produces x̂(λ) for all λ ≥ 0, and terminates when λ reaches 0.

The algorithm can exploit prior information about the desired
number of non-zero elements in the representation to produce an
automatic choice for the regularization parameter λ for basis pur-
suit. In particular, among all λ for which x̂(λ) has the desired
sparsity, the smallest one can be a reasonable choice in many sce-
narios, as it leads to the smallest residual, ‖y − Ax̂(λ)‖2. One
might also consider other choices for λ, guided by the structure of
the solution path, as we discuss in Section 4.

The computational complexity of the algorithm is dominated
by the inversion of the matrix Φ at each breakpoint, which is bounded
by O(M3), where M is the number of rows of A. However, at
each breakpoint the rank of the matrix Φ is changed by adding
(or removing) a row and a column, hence instead of computing
the inverse from scratch, rank-one updates can be done at the cost
of O(M2). Empirically, the number of breakpoints is around M ,
but more careful analysis is in order. Thus, the cost of finding
the whole solution path is roughly the same as for one iteration
of the Newton’s method to solve the problem in (1) for a fixed λ,
i.e. O(M3). In addition, if one does not need the full solution
path x̂(λ), but only the path from x̂(λ0) = 0 to a solution with
L components, then the complexity is bounded by O(L3), with L

instead of M , and the number of breakpoints is typically around L.
Thus, the method is extremely efficient in computing very sparse
solutions starting from x̂(λ0) = 0.

To conclude the section, let us comment on the numerical sta-
bility of the algorithm. When we switch from one region to an-
other, the only information that is carried over is the support of the
new optimal solution, and the signs. Hence, if a small numerical
error due to finite precision is made in computing the optimal so-
lution for one region of λ (small enough not to affect the support
and signs of the solution at the region boundary), then in the next
region this error has no effect at all. Thus, the algorithm has a
self-stabilizing property.

4. NUMERICAL EXAMPLES

4.1. Small Analytical Example

First we consider a very small example with A ∈ R
2×3:

A =

„
1 2 3
1 3 1.5

«
, and y =

„
6
6

«

We apply the algorithm from Section 3, and the resulting solution
path is shown in Figure 1. For this small problem, we are also
able to compute the entire solution path analytically, and observe
that the algorithm produces it accurately. The two triangles are the
intersections of R

+ with the planes x1 + 2x2 + 3x3 = 6, and
x1 + 3x2 + 1.5x3 = 6. The solution path x̂(λ) starts at λ = 60,
with x = 0. As λ starts to decrease, the solution path enters
a segment with one non-zero component: x2 = 30

13
− λ

26
, and

x1 = x3 = 0. The segment satisfies optimality conditions until
λ = 28.8, after which x3 becomes non-zero. The solution path
from λ = 28.8, down to λ = 0+ is x2 = 3

2
− λ

96
, x3 = 1 − 5λ

144
,

and x1 = 0. The minimum-norm solution, corresponding to λ =
0, is x̂MN = [.4968, 1.3758, .9172], is not sparse.

4.2. Larger Numerical Examples

Now we demonstrate the application of the algorithm on larger
examples. We consider a problem y = Ax + n, where A is an
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Fig. 1. Solution path for a small problem.

overcomplete 20×100 discrete cosine transform (DCT) dictionary,
and n is zero-mean Gaussian noise. Dictionaries of this type arise
naturally in many signal processing applications, one example be-
ing source localization with sensor arrays, where the observation
model for linear arrays involves a discrete Fourier transform (DFT)
dictionary [9]. In the specific example we consider here, x has two
non-zero components, both equal to 1. In Figure 2 (top) we plot
the solution path for noiseless data (n = 0), in the middle plot for
small amounts of noise (SNR = 15 dB), and in the bottom plot for
moderate amounts of noise (SNR = 5 dB). Each piecewise-linear
curve in these plots corresponds to one component x̂i(λ). We also
evaluate the solution at three intermediate values of λ in each lin-
ear segment, and compare it to a solution of the corresponding
optimization problem in (1) using quadratic programming. The
solutions agree almost perfectly, up to negligible numerical errors
for all the examples.

Consider the top plot of Figure 2 which depicts the noiseless
scenario. The smallest λ which leads to two non-zero components
is λ = 0+, which is the best parameter choice in this case. The
corresponding solution found by homotopy-continuation has two
non-zero entries equal to 1, and agrees with the original signal x.
In the middle plot, where the data are slightly noisy, the solution
path ends at a non-sparse vector, which is close to the optimal so-
lution of the noiseless problem (i.e. the other non-zero components
are small). The smallest λ yielding exactly two non-zero compo-
nents is λ = 1.4548. We note that the corresponding solution has
non-zero indices not exactly equal, but very close to the ones of x.
The solution path suggests that an alternative to this choice of λ is
to to pick a non-sparse solution for λ = 0+ and threshold it, which
would recover the exact indices in this mildly noisy scenario. In
the bottom plot, the noise is sufficient to substantially change the
solution path, but the smallest λ which leads to two non-zero el-
ements (λ = 0.6526) still produces a reasonable solution, which
is depicted in Figure 3 (we plot all components of x̂i(λ) vs. i).
Note that the indices of non-zero elements of x̂(λ) are very close
to those of the true x. This ’stability’ of indices of non-zero com-
ponents occurs due to the special structure of A: nearby columns
of A are almost parallel for our overcomplete DCT matrix A, and
columns which are far apart are nearly orthogonal. This structure
is what allows sparse signal representation ideas to be applied to
source localization-type problems, even for highly overcomplete
dictionaries [9].
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Fig. 2. Solution paths x̂(λ) for all λ with varying levels of noise.
A is 20 × 100. Top: no noise. Middle: SNR = 15 dB. Bottom:
SNR = 5 dB.
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Fig. 3. x̂(λ) for λ = 0.6526, the minimum λ leading to two non-
zero components. SNR = 5 dB.

The above set of experiments were done for a severely over-
complete dictionary (A is 20×100). Let us now consider a mildly
overcomplete, 20 × 23 DCT dictionary, A. This problem is less
demanding than the previous scenario in the sense that the desired
signal representation is on a “coarser grid” of dictionary elements
(leading to smaller mutual coherence [2]). In Figure 4, we observe
that for noisy data the results exhibit excellent stability: even with
moderate amounts of noise, SNR = 5 dB, the two non-zero com-
ponents are clearly visible for any choice of λ. We note that these
components exactly match the indices of non-zero elements of x.

Some observations can be drawn from the above experiments.
The components of x̂(λ) tend to decrease as λ increases, but as
can be seen from the middle plot in Figure 2, a component which
was equal to 0 may become non-zero as λ increases. We also ob-
serve that sparse representation is easier in dictionaries with well-
separated elements (in the sense of [2]). However, all hope is not
lost even for severely overcomplete dictionaries, as long as they
have certain structure.

5. CONCLUSION

We have described a simple and efficient algorithm to generate en-
tire solution paths (as a function of the regularization parameter) of
basis pursuit for sparse signal representation in overcomplete dic-
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Fig. 4. Solution paths x̂(λ) for all λ with varying levels of noise.
A is 20 × 23. Top: SNR = 15 dB. Bottom: SNR = 5 dB.

tionaries. The algorithm can also be used to identify good choices
for the regularization parameter. The ease in generating the solu-
tion paths make them a useful tool for empirical exploration of the
behavior of basis pursuit in various scenarios.
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