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ABSTRACT
The purpose of this contribution is to extend some results
on sparse representations of signals in redundant bases de-
veloped for arbitrary bases to two frequently encountered
bases.

The general problem is the following: given a � � �
matrix

�
with � � � and a vector 	 � �  �

with
 �

having� � � nonzero components, find sufficient conditions for �
to be the unique sparsest solution to

�  � �  �
. The

answer gives an upper-bound on � depending upon
�

.
We consider the cases where

�
is a Vandermonde ma-

trix or a real Fourier matrix and the components of
 �

are
known to be greater than or equal to zero. The sufficien-
t conditions we get are much weaker than those valid for
arbitrary matrices and guarantee further that

 �
can be re-

covered by solving a linear program.

1. INTRODUCTION

The problem of the recovery of exact sparse solutions of a
set of under-determined linear equations has been proposed
in [1] and has received some attention since [2, 3, 4, 5, 6].
The results obtained so far are as follows.

Given a (n,m)-matrix
�

with � � � and a vector 	 that
indeed admits an exact sparse representation, say 	 � �  �

,
it has been shown that if the number of non-zero entries
in

 �
is smaller than a given bound, then

 �
is the unique

sparsest representation. Since searching for the sparses-
t representation is a NP hard problem [7] that can only be
solved by exhaustive search, one is tempted to replace the
true search for the sparsest solution� � � � !  ! # subject to

�  � 	 , ( % # )
with !  ! # the number of non-zero entries in


, by the easy-

to-solve linear program� � � � !  ! * subject to
�  � 	 , (LP)

with !  ! * � - . * 0  2 0 , i.e., to minimize the 3 * norm of
instead of the sparsity itself. The problem is then to de-

termine sufficient conditions for the two criteria to have the
same unique solution.

In order to define when this is the case, one generally
normalizes the columns 4 2

of
�

to one in euclidean norm

and introduces the mutual coherence [1]
5 � � 7 9* : ; => 2 :

.
0 4 @; 4 2 0 B (1)

of the dictionarywhose atoms or components are the column-
s of

�
. The smaller

5
, the less coherent are the components

of the dictionary and
5 � D if and only if the columns are

orthogonal. It is worthwhile to know that there are indeed
redundant dictionaries with � F � H components and mutu-
al coherence

5 F *I J [8, 9].
It has been shown in [1, 2, 3, 4] that if

!  � ! # � KL N K P K5 R (2)
then

 �
is the unique sparsest representation of 	 and

that it can be recovered by solving (LP) defined above. It
is worth noting that (2) is independent of the magnitudes
of the nonzero entries of

 �
. Being able to recover

 �
ap-

pears to be only a matter of structure, of angles between
vectors. This is similar to what happens with identifiability
conditions in estimation theory or observability conditions
in systems theory.

Here we will obtain stronger results for two specific
�

matrices and when the weights in
 �

are known to be greater
than or equal to zero. This last assumption changes the na-
ture of the problem and the conditions we will obtain will
be independent of � the number of columns in

�
.

We will consider the Vandermondematrices whose column-
s are of the form

S N U R � W K U U H Y Y Y U [ Y Y Y U J \ * ] @ (3)
and real ^ ` b c d e c matrices whose columns are

g N i R � KL N S N e ; k R P S N e \ ; k R R (4)

� W K o q s i o q s L i Y Y Y o q s v i Y Y Y o q s N � x K R i ] @ Y
As in [4] we will start from the optimality conditions

satisfied by an optimum of the linear program N z % R and the
sufficient conditions insuring uniqueness of the optimum.
We will see that it is no longer useful to consider

�
matrices

whose columns have unit euclidean norm, i.e. we will not
normalize the vectors S N U R and g N i R defined above.
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2. OPTIMALITY CONDITIONS FOR (LP)

Since we assume the weights in
�

to be greater than or equal
to zero, the linear program (LP) minimizing the � � -norm
becomes

� � �� � 
 �
subject to

� �  � and
� � � (LP+)

where � denotes a column vector of ones of adequate di-
mension. The dual of this linear program is [10] :

� � �� � 
 � subject to
� 
 � � � (DLP+)

For given � , let
� � � � be a feasible point of (LP+), we

denote �� �
the reduced dimensional vector built with the

strictly positive components in
� �

and �� �
the matrix built

with the corresponding columns of
�

, one thus has
� � � 

�� � �� �  � . Standard duality theory for convex programs
then says that the point

� �
is an optimum of (LP+) if and on-

ly if there exists, say � �
, a dual feasible point that achieves

the same cost, i.e.

� � � � � 
 � � � � and � 
 � �  � 
 � �

This point is then an optimum of (DLP+). Furthermore both
optima are unique if no constraint of the dual is degenerate,
i.e., � 
� � � � � � � � �� �� �

. To summarize one has the fol-
lowing proposition.

Lemma 1: The point
� �

is the unique optimum of (LP+) if

� � � � � 
 � �  � 
 � �  �� 
 � � �  � (5)

and � 
� � � � �  � � � �� �� � �

This is only a sufficient condition for uniqueness but since
the solution of the primal linear program (LP+) is degener-
ate, i.e. ! � � ! # � $ , one cannot expect a stronger result.
When the optimum of the primal is degenerate the optimum
of the dual (DLP+) is undetermined and this also signifies
that the primal is % $ & � � � � ( , i.e., even the slightest perturba-
tion of � will lead to a drastic change in the optimum of the
primal. The optimum of the primal will loose its sparsity in
a fully unpredictable way.

In the sequel we will apply Lemma 1 to the two specific�
matrices whose columns have been introduced above (3),

(4). In [4], it is applied to arbitrary matrices and leads to
condition (2).

3. THE VANDERMONDE MATRIX CASE

3.1. Sufficient condition for recovery

The (n,m)-matrix
�

has ) columns denoted * + - . defined
in (3) with - having ) distinct values - / taken for instance

on a regular grid in 0 1 �  � 0 . We seek sufficient condition-
s on

�
and ! � � ! �

, under which the solution of (LP+) with
�  � � �

is unique and equal to
� �

which is assumed to sat-
isfy

� � � � . It happens that the conditions we will get is
independent of ) and on the way the ) distinct values - /
are taken. It only depends upon $ the number of observa-
tions. We prove the following results.

Lemma 2: For
�

an (n,m)-Vandermonde-matrix with dis-
tinct columns, the sparsest solution to � � �  �  � � � �
and to (LP+) is unique if �  � � �

with
� � � � and

! � � ! # � �
$ 1 �5 ! (6)

where � # ! denotes the nearest integer that is � # .
�

Proof: We indicate how to construct a vector � �
satisfying

(5). With an arbitrary vector $  0 $ # $ � 8 8 8 $ : ; � < 
 we as-
sociate the polynomial = + - .  $ 
 * + - .  $ # > $ � - > 8 8 >

$ : ; � - : ; �
. The idea is to build a polynomial in - that is

zero on the values - ? to be preserved and strictly positive
elsewhere.

With a given - ? , one associates @ ' ) + - .  1 - ? > -
whose square: @ B' ) + - .  - B

?
1 5 - ? - > - B is then such that

@ B' ) + - . D �  � - + - ? and @ B' ) + - ? .  � . But @ B' ) + - . 
$ 
?

* + - . with

$ 
?  0 - B
?

1 5 - ? � � � 8 8 8 � <

and the vector � 
  0 � � � � 8 8 8 � < 1 $ 
? then satisfies
conditions (5) if �� �  0 * + - ? . <

.
If there are I columns in �� �

, one proceeds similarly and
one builds the polynomial @ B + - .  - / � @ B' ) + - . . This poly-
nomial has degree

5 I , the associated vector $ has
5 I > �

non-zero components and so has the sought for vector � .
The bound (6) then follows by writing that the number of
non-zero components in � has to be smaller than or equal to
the dimension $ of � .

�
Note that the bound (6) does not depend on ) the num-

ber of columns in
�

and holds for both normalized or un-
normalized * + - . columns (3) since the proof remains valid
if the columns are normalized.

To fix ideas, we assumed that the - / ’s are equispaced
in 0 1 �  � 0 but this is nowhere used in the proof and can
be relaxed. On the contrary the assumption on the sign of
the weights (

� � � ) is essential in our proof and seems
necessary if one wants to improve the bound from (2) to (6)
in the linear programming context.

3.2. Comments
1 The necessary and sufficient bound on ! � � ! # for

� �
to

be the unique sparsest solution to
� �  � � �

(true sparsity
and not just � � -sparsity) is easy to obtain in this case. Since

V - 730

➡ ➡



for (n, m)-dimensional Vandermonde matrices with distinct
columns all sets of � column-vectors are linearly indepen-
dent, the vectors in the kernel of

�
have at least � � � non-

zero components and it follows that the expected bound is� � � � 	 � �



� � . It is identical to (6) for odd � and slightly
better for even � . This may be the price to pay (in addition
to the sign constraint) to recover

� �
without an exhaustive

combinatorial search.� The bound (6) is also the one, one obtains in a different
context and for a different recovery algorithm using result-
s from realization theory developed in systems theory [11].
The problem there is to recover the discrete time transfer
function associated with a given impulse response. A s-
ketch of the corresponding reasoning is as follows. A dis-
crete time first order system with pole equal to �  has a par-
tial impulse response proportional to � � �  � and the square
Hankel matrix built with the � samples of the response is
of order �


 � �
� � and rank one. If � � � � 	 � � , then the com-

ponents in � � � � �
are seen as the first � samples of the

impulse response of a system built with � first order systems
in parallel and the rank of the order �


 � �
� � square Hankel

matrix built with the � samples in � has rank � � � � � � �

 � �

� � � .
If � � �


 � �
� � � � � �


 � �
� � the Hankel matrix is rank defi-

cient and one can show that the polynomial associated with
any vector in its kernel has the � values �  as roots.

The algorithm to be used to recover the �  ’s, searching
for eigenvectors and the roots of a polynomial, is now more
complex and of a quite different nature than solving a lin-
ear program, but in this context there is no discretization
involved ( �  �

IR � and the signs of the weights need not be
constrained to be positive.

4. THE REAL FOURIER MATRIX CASE

4.1. Sufficient condition for recovery

Now the (n,m)-matrix
�

has  columns denoted ! � # � de-
fined in (4) with # taking  distinct values for instance on
a regular grid in � $ � � � . The sufficient condition we will get
is the same as the one given in Lemma 2 for Vandermonde
matrices.
Lemma 2’ Lemma 2 also holds when

�
is an (n,m)-real-

Fourier-matrix with  � � distinct columns.
�

The proof is similar in its philosophy but different in
its implementation. The polynomial % & � � � � that is zero for

� � ' �  & � is % & � � � � � � � � '  & � � � � � ' �  & � � � � � �* + - / # 0 � � � . And we take now the square of the modulus
of this polynomial on the unit circle to guaranty that it will
be zero for � � ' �  & � and strictly positive elsewhere.

1 % & � � � � 1 � � � � 
 � � % & � � � � % & � � �
� � �

� * �  + - / � # 0 �  + - / # 0 � � � �
� � � � � � � � �

� � �
� * � � +

* + - / � # 0 �  + - / # 0 � 4 ! # � � 4 ! * # �

With this polynomial one associates the vector

� 50 � 6 � +
* + - / � # 0 �  + - / # 0 � $ $ 7 7 7 7 $ 8

which is such that � 50
! � # 0 � � $ and � 50

! � # � : $ 
 # ��
# 0 and hence the vector � 5 � 6 � $ $ $ 7 7 7 $ 8 � � 50which satisfies (5) when there is just the column ! � # 0 � to be
isolated. If there are � columns to be isolated, one proceeds
as above and builds the reciprocal polynomial  � � 1 % & � � � � 1 �
and the associated � and � -vector will have

* � � � non-
zero components and the constraint

* � � � � � leads to the
announced bound on � � � � � � 	 .

�

4.2. Comments
� The comments are similar to those made for Vandermonde
matrices. The fact that any set of � distinct columns of the
form (4) are independent is less well known than in the Van-
dermonde case but can be proven by noting that ! � # � �� � � + - / � # � � with

�
a non-singular lower-triangular matrix

independent of # whose lines contain the coefficients of the
Tschebyscheff polynomials and the result then follows from
the Vandermonde case. Hence the bound � � � � 	 � �



� � that

is necessary and sufficient for the ? �
-sparsity. One can note

that this same transformation
�

holds between the vectors
� 0 and � 0 introduced above.� The bound (6) is the same one obtains using a powerful
theorem by Caratheodory [12] which says that given � - �
complex numbers � � � � � � � 7 7 7 � � 
 � , not all zero, there exists
an unique sparsest decomposition satisfying :

� A � � � ��
�

� � '  A & � � � � � � 7 7 7 � � � �
with

� � : $ , # � �� # 0
� 8 � � � � 8

and � � � � � .
If one specializes this theorem to real numbers � A

, one ob-
serves that which each # � �� $ or � in the decomposition
one can then associate an # � � � � # �

with
� � � � � �

. In our
context, this implies that if � � D � � � � ! � # � � with arbitrary
# � � 8 $ � � 6 , � � : $ and � � �


 � �
� � then this decompo-

sition is unique. One gets the same bound (6) with sign-
constrained weights but for arbitrary values of # not nec-
essarily belonging to a grid. The theorem by Caratheodory
however does not tell us how to recover the decomposition.
The corresponding recovery part has been proposed by Pis-
arenko [13] and, as for the method based on realization the-
ory sketched in section 3.2, requires to compute the roots of
a polynomial.� The method based on realization theory proposed in sec-
tion 3.2 also applies to the present real Fourrier case, but
since each oscillator (sinusoid) induces a rank two in the
Hankel matrix the bound on � � � � 	 one gets is twice low-
er than (6). This bound can in fact further be improved in
the present context and in anycase this approach imposes no
sign-constraint on the weights.
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5. REMARKS ON THE UNIQUENESS OF THE
SOLUTION

The results we established (Lemma 2 and 2’) are valid for
both normalized or un-normalized columns in

�
. In the last

case, see (3),(4), the first row of
�

is filled with ones and
the first equation in

� � � � (LP+) is � � � � � � 	 
 where
� � 	 
 denotes the first component of � . Since the criterion in
(LP+) is precisely �  � � � �

, this means that all admissible
points have the same cost � � 	 
 . Since we proved uniqueness
of the optimal solution, we actually established uniqueness
of the admissible points.
Lemma 3: For

�
an (n,m)-Vandermonde or real-Fourier

matrix with distinct columns, the solution to � � � � � � � �
� � is unique if � � � � �

with
� � � � and

� � � � � � �
� � 	� �

where � 	 � denotes the nearest integer that is � 	 .
�

And indeed one can reach the same conclusion by observ-
ing that the vector � (and � ) we introduced in the proofs of
Lemma 2 and 2’ verifies the following proposition:
Proposition: The solution

� �
of � � � � � � � � � � with

� � � � � � � � � �
is unique if

� � � � � � � � � and � �! � " � � � ! �� � �
(7)

with � �
is a full column rank matrix.

�

This result applies only for � � � � � # � , since otherwise
� � � . It is a consequence of the following lemma we will
prove.
Lemma 4: The j-th component of all points in the set, as-
sumed to be non-empty, � � � � � � � � � � is zero if and
only if

� � � � � � � � � � � � � � � � �! � " � .
�

Proof: To establish the necessity of the condition, one in-
troduces the linear program�  � � ' �! �

subject to
� � � � � � � �

with ' !
is the j-th column of the identity matrix. Its dual is� ) * � � � subject to

� � � � � ' !
.

With
� �

the optimum of the primal, that exists by assump-
tion and has cost zero, one can then associate � �

an op-
timum of the dual which satisfies � � � � � � ' �! � � � � ,� � � � � � and � �! � � � � 	 . One then takes � � � � �

to
establish the result. The condition is sufficient since it im-
plies � � � � � � � � � � . But � � � � � � with � � � � � and� � � in turn implies that ' �! � � � whenever � � � ! " � .

�
The proposition then follows from Lemma 4 and the as-

sumption that � �
is a full column rank matrix.

6. CONCLUSIONS

We have considerably improved the bound (2) known for
arbitrary matrices by exploiting the specific structure of the
Vandermonde and real Fourier matrix. The new bound (6) is

independent of the number , of components in the dictio-
nary but holds only under the assumption that the weights
are sign-constrained. It is our impression that this restriction
cannot be removed in case the recovery has to be achieved
by solving a linear program.

This analysis is also of interest because it allows to as-
sess the resolution or separation properties of estimation
methods based on this kind of approaches. The fact that
the bound (6) is independent of , indicates that it is possi-
ble to develop high-resolution methods.This possibility has
already been exploited for instance in [14] where the linear
program is replaced by a quadratic program.

We have also mentioned for the same two specific sit-
uations the existence of other recovery algorithms and in
each case indicated the corresponding bounds and potential
sign-restrictions.
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