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ABSTRACT

A reduced complexity version of the Bounded Error
Subset Selection (BESS) algorithm is proposed. By relax-
ing the integer constraint in the original BESS algorithm,
we show that the BESS problem can be reformulated as an
ordinary linear program instead of an integer program with
exponential worst-case complexity. We retain the sparse-
ness of the representation in the modified BESS by weight-
ing the dictionary with the minimum 2-norm solution of the
subset selection problem corresponding to the BESS prob-
lem at hand. The proposed algorithm is compared to the
Basis Pursuit, Orthogonal Matching Pursuit, and the Best
Orthogonal Basis algorithms. It is shown that the proposed
algorithm has a better packing property and an improved
rate-distortion behavior.

1. INTRODUCTION

Sparse signal representations find applications in many sig-
nal processing areas such as coding, signal restoration, di-
rection finding, source localization, and linear inverse prob-
lems, to name a few. In the subset selection problem (SS),
it is required to find the best signal representation for a sig-
nal vector b using an overcomplete dictionary represented
by the N -dimensional vectors spanning the column space
of the matrix A. By construction, the number of vectors
M in the dictionary is such that M � N . Thus, it is re-
quired to find the sparsest vector x (the vector x with the
minimum number of non-zero solution) such that Ax = b.
It is known that the SS is NP-hard [1]. Several strategies
have been developed for solving the SS problem. In partic-
ular, the Method of Frame (MoF) finds the solution which
minimizes the 2-norm of the solution vector [2]. However,
the MoF does not address the sparseness issue. The Basis
Pursuit (BP) algorithm, which can be solved using linear
programming, finds the solution that minimizes the l1-norm
of the solution vector [3]. In practice, BP algorithm yields
reasonably sparse signal representations. Matching Pur-
suit (MP) is an iterative greedy algorithm in which the
signal is iteratively decorrelated from the dictionary vec-
tor which has maximum correlation with the residual [4].
A variant of MP called the Orthogonal Matching Pursuit
(OMP) performs an extra step of orthogonalization before
each iteration [5]. However, both MP and OMP are greedy

algorithms that lack a global optimality criterion. The Best
Orthogonal Basis (BOB) uses an entropy measure over or-
thogonal bases to provide a near-optimal solution [6]. How-
ever, as will be seen in the simulation section, BOB fails to
find a good sparse representation for some signals when the
orthogonal dictionary does not include the non-orthogonal
signal components.

The proposed algorithm analyzes a perturbed version
of the signal under investigation. This is a reasonable ap-
proach due to the normal presence of noise, masking effect,
or channel distortion. Sparseness is imposed explicitly by
minimizing the number of non-zero coefficients in the so-
lution vector. We demonstrate via simulation the ability
of the proposed algorithm to find sparser signal represen-
tations with smaller approximation errors than other algo-
rithms.

2. THE BOUNDED ERROR SUBSET
SELECTION

The Bounded Error Subset Selection (BESS) has been in-
troduced by the authors in [7, 8] as a reformulation of the
classical subset selection problem. It has been shown that
by introducing a perturbation vector �ε to the signal under
investigation, b, one can obtain a maximally sparse rep-
resentation of the signal from the overcomplete dictionary
A. Sparseness is imposed by minimizing the number of
non-zero coefficients in the solution vector x. This can be
achieved by constraining the solution coefficients to take
only 0-1 values. In particular, the BESS solves the follow-
ing integer program:

min
x

1T x (1)

s. t.

{
bmin ≤ Ax ≤ bmax

xk ∈ {0, 1}.
where, bmin = b − �ε1 and bmax = b + �ε2. Here, �ε1 and �ε2
are error vectors or simply constant perturbations. Since
xk ∈ {0, 1}, the value of the objective function represents
the number of non-zero coefficients in the solution vector,
x. This measure of sparseness is minimized directly while
keeping the reconstruction error, �εr, bounded by

‖ �εr ‖∞≤ max{‖ �ε1 ‖∞, ‖ �ε2 ‖∞}. (2)

In practice, we chose the error vectors to be equal constant
perturbation vectors of value ε, hence ‖ �εr ‖∞≤ ε. Thus,
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unlike the classical subset selection problem where the l2-
norm of the error is minimized, the BESS tries to increase
the sparseness of the representation while keeping the l∞-
norm of the error bounded.

Fig. 1 provides a geometrical interpretation of the BESS
in the 2-D case. In particular, by introducing two error vec-
tors �ε1 and �ε2 that are not equal in general, the solution vec-
tor x is allowed to take values such that the reconstructed
signal Ax can only be located inside the bounding rectan-
gle as shown in Fig. 1. Hence, the ‖ �εr ‖∞ is controlled
by the size of the bounding rectangle. If �ε1 = �ε2, then the
rectangle reduces to a square in 2-D, or a hyper-cube in the
N-dimensional case, centered at the signal point b.

� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � ����
�

−�ε1 b

bmin

bmax

�ε2

Figure 1: 2-D Geometric interpretation for the BESS.

3. RELAXING THE INTEGER CONSTRAINT

Although the formulation (1) is optimal in the sense that
it minimizes the number of non-zero coefficients of the so-
lution, it suffers from the following shortcomings:

• The complexity of the binary integer program (1) is
high. In fact, it has an exponential worst-case com-
plexity.

• The underlying model with xk ∈ {0, 1}, implicitly as-
sumes that the signal under investigation, b, is com-
posed of non-weighted dictionary vectors. In particu-
lar, it does not accommodate the fact that, in general,
an acceptable approximation to the signal as a direct
sum of entries from the given dictionary A may not
exist.

In order to overcome the previous shortcomings one needs
to introduce a weighted dictionary and relax the integer
constraint. One solution is to directly relax the integer con-
straint in (1). This would introduce the required weighting
effect by letting the elements of x take values other than
zero and one. However, this leads to losing the explicit
expression for the required sparseness that characterized
the original BESS formulation with the integer constraint.
In particular, the value of the objective function in (1) no
longer represents the number of non-zero elements in x.

Note also that in the integer BESS formulation of (1),
the solution vector x is responsible for both the sparseness
and accuracy of the solution. In particular, when xk �= 0,
this means that the kth dictionary vector is selected with
weight equal to xk. In contrast, let us now examine a differ-
ent formulation of the problem that separates the sparseness
issue from the accuracy requirement. This is achieved by
introducing the weighted dictionary Aw = AW where W
is a diagonal weighting matrix, W = diag(w1, w2, · · · , wM ),

where wi represents the weight corresponding to the kth dic-
tionary vector. The diagonal entries wi should be selected
in such a way that the reconstructed signal b̂ is in the neigh-
borhood of b, i.e., inside the corresponding hyper-cube. A
possible choice is to use the minimum l2-norm solution of
the corresponding subset selection problem, i.e., take w to
be the minimum l2-norm solution to Ax = b. This guaran-
tees that b̂ would be inside a sphere co-centered with the
cube at b and at the same time ‖b − b̂‖2 is minimized.

Now, by introducing the weighted dictionary Aw, we
can reformulate the BESS problem as:

min
x

1T x (3)

s. t.

{
bmin ≤ AWx ≤ bmax

xk ≥ 0.

It should be noted that trying to solve (3) by only relaxing
the integer constraint without introducing W may lead to
a non feasible solution in the linear program. This is due
to the fact that, in this case, there is no guarantee that b̂
is inside the bounding hyper-cube.

As we discuss below and demonstrate experimentally in
the next section, solving (3) yields a sparse solution to the
subset selection problem. In order to increase the accuracy
of that solution, a correction step is performed after (3) is
solved. The correction consists in updating the non-zero
coefficients in the solution to (3). Specifically, we replace
the vector of these non-zero coefficients by the vector that
minimizes the l2-norm of the error in approximating b using
the dictionary vectors corresponding to these coefficients.

x1 + x2 = c

x1

x2

Figure 2: Minimizing the integer-relaxed objective function
in 2-D.

Although the objective function in (3) does not explic-
itly represent the number of non-zero coefficients in x, it
does implicitly induce sparseness in the solution. This can
be understood from Fig. 2 which illustrates the objective
function to be minimized in the 2-D case. As mentioned
earlier, introducing the weighting matrix W has the effect
of reducing the magnitude of the entries xk of x. On the
other hand, minimizing the objective function in (3) sub-
ject to the positivity constraint on the entries of x has the
effect of pushing the coefficients xk towards zero as shown
in Fig. 2. This increases the sparseness of the solution. In-
deed, the experimental results that we provide in the next
section show that the vast majority of coefficients xk in the
solution x to (3) are zero.
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Finally, note that (3) is an ordinary linear program that
can be solved using fast LP algorithms such as the interior-
point algorithms. In contrast, the complexity of the integer
program (1) is high.

4. SIMULATION

The proposed algorithm (BESS) has been compared to the
well-known methods for sparse signal representation, namely,
Basis Pursuit, Orthogonal Matching Pursuit, and Best Or-
thogonal Basis with l1 entropy. Simulations were performed
on different signals and different dictionaries derived from
the Atomizer package [9]. The free-ware lp solve was used
to solve the linear program on Pentium-III 866 MHz. [10].

For illustration purpose, several signals were analyzed
to demonstrate the advantage of using the proposed algo-
rithm. Table 1 summarizes information about the analysis
results, including dictionary size, the tolerance ε used, the
consumed CPU time in seconds, the sparseness of the solu-
tion (the ratio of the number of non-zero coefficients in the
solution to the length of x), and finally, the 2-norm of the
reconstruction error.

Table 1: Simulation Results

Signal Dictionary ε Time Sparseness ‖ �εr ‖2

FM CP : 256 × 1792 1e-3 51.74 0.1445 4.16e-13
Werner WP : 512 × 3072 1e-3 36.13 0.167 2.72e-13
Doppler CP : 256 × 2048 1e-6 29.46 0.125 6.414e-14
Carbon WP : 512 × 3072 1e-3 19 0.014 5.35e-15

To compare the proposed algorithm to BP, OMP, and
BOB algorithms, we provide histograms of the magnitude
of the sorted solution coefficients and the norm of the recon-
struction error vs. the number of bases in Figures 3 and 4.
Specifically, Figs. 3 and 4 show the results that we obtained
for the Carbon and Doppler signals respectively. Sparseness
of the solution can be verified from the histogram of the so-
lution vectors for both signals in Fig. 3(a) and Fig. 4(a).
Note that both figures indicate the high probability of oc-
currence of zero. Fig. 3(b) and Fig. 4(b) reveal the packing
property of the coefficients for the BESS as compared to the
other algorithms. As can be seen from Fig. 3(c) OMP fails
to represent the Carbon signal properly. In contrast, the
proposed algorithm was able to represent it using fewer co-
efficients than either BOB or BP. Similarly, the proposed
algorithm succeeded in sparsely representing the Doppler
signal compared to the other techniques as shown in Fig.
4(c).

5. CONCLUSION

An integer-relaxed version of the Bounded Error Subset Se-
lection (BESS) algorithm was proposed. This has the effect
of reducing the complexity of the algorithm from an inte-
ger program to an ordinary linear program which can solved
efficiently. It has been shown that the reduction in complex-
ity does not come on the expense of reducing the sparseness
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Figure 3: Carbon Signal

of the signal representation. Several signals were analyzed
using the proposed algorithm and compared to the Basis
Pursuit, Orthogonal Matching Pursuit, and Best Orthogo-
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Figure 4: Doppler Signal

nal Basis algorithms. Simulation shows the potential of the
BESS algorithm in sparse signal representation.
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