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ABSTRACT

We briefly recall previous literature about the interaction between

sparsity and �1 minimization. We then discuss �1 minimization in

geometry separation, in compressed sensing, and in compressed

sensing of separable signals.

1. INTRODUCTION

Sparsity has played a role in signal recovery for decades. Recently,

however, the term ‘sparsity’ is appearing more frequently in titles

and abstracts. The role of �1-based penalization for dealing with

sparse signal recovery problems has also been known for years,

and is also becoming increasingly prominent. Why is this happen-

ing now?

1.1. The Early Days

The connection between sparsity and �1 has been known as a rough

empirical matter for a long time. The first author became aware

of this theme in the late 1970’s while working in seismic explo-

ration; at that time, ”Sparse Spike Train” processing became pop-

ular. The idea was that the real earth was irregularly layered, mak-

ing the underlying reflectivity an irregular series of spikes. The

seismic experiment gave information missing low frequencies, cre-

ating an ill-posed linear inverse problem. Researchers began to

use �1-penalization in deconvolution; this gave good empirical re-

sults when applied to real and simulated signals where the solution

was truly sparse. Jon Claerbout and his lab at Stanford did much

early work on �1 methods in the 1970’s, e.g. [4]. A paper crisply

stating many of the ideas that were in the air appeared in Geo-
physics, the flagship exploration journal in early 1979 [20]. In this

paper, Taylor, Banks and McCoy applied l1 penalized deconvolu-

tion with adjustable penalty factors. By varying the penalty factor,

spiky reconstructions with varying degrees of spikiness were ob-

tained. The sparsest reconstructions looked surprisingly good, and

the ability to ’tune’ the sparsity of the solution merely by selecting

the penalty factor was quite suggestive.

1.2. Rigorous Results

So �1 penalization in ill-posed deconvolution problems has been

available for some time. In the 1990’s theoretical validation of

its benefits came available, in a simple statement that is so strik-

ing that it perhaps could wake some people up to the potential.
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Donoho and Logan’s result [6] concerned bandlimited deconvolu-

tion for functions on the real line t ∈ R. Suppose that one ob-

serves y = k � f0, with k the highpass kernel ‘killing’ frequencies

below π. Suppose that f0(t) is sparse in the sense that it vanishes

outside a set T which obeys the sparsity condition

sup
t∈R

|T ∩ [t, t + 1)|

Then the minimum L1 solution

min ‖f‖1 subject to y = k � f

is precisely f0. Here all low frequencies are entirely missing and

yet f0 can be recovered perfectly! As a traditional linear inverse

problem, the problem is wildly ill-posed, and yet the recovery is

perfect. Moreover, the solution is stable; if y = k � f0 + z with

‖z‖1 ≤ ε, then the minimum L1 solution is order O(ε) away from

f0. Here sparsity of f0 and the L1 norm produce a truly nonlinear

and powerful regularization.

1.3. Abstract Generalizations

The 1990’s brought new signal processing problems far more ab-

stract than deconvolution. Consider an overcomplete signal rep-

resentation, where a signal of interest is composed of terms taken

from two different basis sets simultaneously, using only a rela-

tively few terms from each basis. Since one can obviously rep-

resent any signal using one basis alone, using two bases gives a

system of underdetermined equations with more unknowns (coef-

ficients in the two bases) than equations (signal values to recon-

struct). Heuristic proposals to use combined representations were

by workers in the computational harmonic analysis community in

the early-to-mid 1990s [5, 19, 3]. The first author’s work on ‘Basis

Pursuit’ was based on his intuition that the problem of combined

representation was in some way analogous to problems of high-

pass deconvolution, and that the Donoho/Logan result on stable

recovery would carry over to the more abstract setting.

1.4. Rigorous Results in the Abstract Setting

Two types of results have been proved concerning the success of

�1 methods.

In the first setting, we let Ω and Ψ be orthonormal matrices

representing bases of Rn and let Φ = [ΩΨ] be the nonsquare

n by 2n matrix built by sideways concatenation. Given a signal

y thought to be a sparse superposition of elements from the two

bases, solve

min
x

‖x‖1 subject to y = Φx.
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If the elements of the cross-products matrix ΩT Ψ are all less than

M in absolute value, then the minimal �1 norm solution is the

sparsest solution, provided the solution has at most (M−1 + 1)/2
nonzeros; see [7, 14, 8, 15, 17, 21] for this and further results.

In the second setting, much more delicate structure is needed.

We have a large underdetermined system of linear equations y =
Φx, with Φ an n by m matrix, and n large, whose columns look

‘like noise’ (e.g. we can have the entries of Φ be i.i.d. Gaussians).

If there is a solution y = Φx0 with x0 sufficiently sparse, the

sparsest solution is also the �1 minimizer; here sufficiently sparse

means that the number of nonzeros < ρn [10, 2]. Also, when noise

is present, solving

min
x

‖x‖1 subject to ‖y − Φx‖2 ≤ ε

gives an approximation to x0 again provided that the underlying

signal is sufficiently sparse [11]. Similar but slightly weaker re-

sults are possible if Φ is a randomly-selected set of n rows from

an m × m Fourier matrix; see [1, 16]

In the remainder of this brief note, we give three quick exam-

ples of recent results in this direction.

2. GEOMETRIC SEPARATION

One original motivation for studying overcomplete representations

was to separate pointlike from linelike and curvelike features in

an image; e.g. see Xiaoming Huo’s Stanford thesis for an early

attempt [18].

Jean-Luc Starck has recently had success in solving geomet-

ric separation problems applying the �1 norm using overcomplete

representations. His implementation approximately solves

min
u,v

‖Wu‖1 + ‖Cv‖2 + λ‖y − (u + v)‖2
2

Here u is supposed to be the part of the image sparsified by the

wavelet transform W , v is supposed to be the part sparsified by

the curvelet transform C, and λ is a noise tolerance parameter.

Recently, theoretical results became available validating this

approach [13]. If the underlying ‘image’ f(x, y) is a generalized

function on the continuum domain f = π + γ where π is a su-

perposition of point singularities and γ is a curvilinear singularity,

it has been shown that a multiscale version of the above problem,

with Pj the projection on wavelet scale j and Wj and Cj wavelet

and curvelet transforms at scale j

min
u,v

‖Wju‖1 + ‖Cjv‖1 subject to Pjf = u + v,

satisfies u ≈ Pjπ, v ≈ Pjγ; i.e. the two components u and v
carry the two different geometric types. Here the sense of approxi-

mation improves as the scale refines. An interesting point: the no-

tion of sparsity is not simply the number of nonzero coefficients,

but involves also the arrangement of the nonzeros (wavelet coef-

ficients clustering near points and curvelet coefficients clustering

near curves, respectively).

3. COMPRESSED SENSING AND EXTENSIONS

In [1, 12, 2], the idea of making reduced numbers of measurements

about a compressible object was proposed. If f0 is an unknown

vector in Rm which is compressible in basis Ψ, we take a random

n by m matrix Φ, getting n compressed sensing (CS) measure-

ments y = ΦΨT f , with n < m. To reconstruct, we solve the �1

problem

min
f

‖ΨT f‖1 subject to y = ΦΨT f.

The paper [23] extended compressed sensing to accomodate

for multiscale phenomena. In multiscale CS, a small number of

samples is allocated at each scale, and compressed sensing is ap-

plied at that scale. At the reconstruction stage, at each scale j an

�1 minimization problem is solved. See [23] for details. Figure 1

shows the result of such a multiscale CS scheme, deployed using

a Curvelet frame. Panel (a) displays the well-known Shepp-Logan

phantom, discretized on a 512 × 512 grid. Panel (b) shows the

result of reconstructing from n = 480256 linear measurements

of Curvelet coefficients. Panel (c) has the result of reconstructing

from n = 103218 multiscale compressed samples. We observe

that a decrease by a factor of 5 in the number of samples gives

comparable results in terms of measured �2 error. The point here

is that the Curvelet system is highly overcomplete, but this ap-

proach allows us to record and use many fewer coefficients than

the nominal number of Curvelet elements.

4. CS FOR SEPARABLE SIGNALS

Combing the last two sections, we can apply compressed sensing

to signals which are not sparse in a single basis, but instead sparse

in a combined representation. Numerical experiments have veri-

fied this idea. For n, p given, we generate an n× p matrix Φ, with

columns iid uniform on Sn−1. We create a matrix Θ by concate-

nating the identity and hadamard matrices, i,.e. Θ = [IH]. The

resulting matrix Θ is of dimensions p × m, with m = 2p. Hence

f = Θα generates a vector f ∈ Rp which is made up possibly

from terms in two different bases. In our experiment, we select

a sparse coefficient vector α0 consisting of k nonzeros, so that

f0 = Θα0 is the underlying signal vector; we apply compressed

sensing: y = Φf0 = y = ΦΘα0. We then solve

min ‖α‖1 subject to ΦΘα = y, (4.1)

for α. If the �1 solution α1 = α0 to machine precision, we say the

method allows ‘perfect’ reconstruction of f0 = Θα0.

Figures 2,3 give results from performing this experiment nu-

merous times for different values of k, n, m; we calculated the

percentage of perfect reconstructions. Panels (a),(b) of Figure 2

displays this percentage versus k, for n = 500, m = 1024 and

1536, respectively. Panels (a),(b) of Figure 3 have plots of the �2

error in the reconstruction, for n = 500, m = 1024 and 1536,

respectively.

In [24], a heuristic was proposed to predict the breakdown

point of local equivalence between the solutions of the �1 prob-

lem and the �0 problem. At the core of this heuristic is mea-

surement of a function ν0(A), followed by some simple algebra.

To study this, we conducted the following experiment. For n, m
given, we drew a dictionary Φn,m at random from a uniform en-

semble, and computed Vn,m, the value of (4.1), with y uniformly

random on Sn−1. We repeated this experiment numerous times at

each specific (n, m) pair, taking the median at each instance. To

our empirical results we fitted a decaying power law of the form

ν0(A) = C ·A−γ . The results are illustrated in Figure 4. In our ex-

periment, a least-squares line fit on the logarithmic scale resulted

in the estimate

ν0(A) ≈ 2 · A−0.586.
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(a) Original, m = 742400 coeffs

(b) Linear rec., n = 480256, ||E||
2
 = 0.142

(c) CS rec., n = 103218, ||E||
2
 = 0.134

Fig. 1. (a) Shepp-Logan phantom, discretized on a 512 × 512
grid; (b) Reconstruction from n = 480256 linear measurements,

‖x̂lin−x0‖2 = 0.142; (c) Reconstruction from n = 103218 Mul-

tiscale Compressed Samples using the Curvelets Frame, ‖x̂ms −
x0‖2 = 0.134.

With this estimate for ν0(A), we may readily apply the heuris-

tic described in [24] to predict the breakdown of local equiva-

lence. Figure 5 compares the heuristic prediction with the em-

pirical breakdown point versus A. Panels (a),(b) show plots for

n = 300 and 500. We see that the heuristic gives a fair estimate

for the empirical behavior of the �1 solution. This suggests an

interesting possibility: that we can perform compressed sensing

of geometrically-separable objects, not needing to separate before

compression.
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Fig. 3. Panels (a),(b) show the behavior of the �2 error versus the

number of nonzeros for n = 500, m = 1024 and 1536, respec-

tively.
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