
ABSTRACT

Waveforms for active sensors (e.g. radar or active
sonar) are often designed to maximize sensitivity to target
motion to enhance tracking performance. This paper
addresses the complementary problem of waveform design
to maximize insensitivity to motion. Insensitivity is
desirable in cases where motion is a nuisance to the sensor
system.

The motion insensitivity problem has been approached
in the past using the trajectory diagram, related concepts
of trajectory ambiguity, and generalized ambiguity
functions. This paper discusses motion insensitivity in
terms of both trajectory ambiguity and the generalized
ambiguity function. The relationship between trajectory
ambiguity and motion insensitivity via a generalized
ambiguity function is described mathematically. The
hyperbolic FM (HFM) signal is used as an example of a
velocity insensitive signal.

1. INTRODUCTION

Waveforms for active sensors (e.g. radar or active
sonar) are often designed to maximize sensitivity to target
motion to enhance tracking performance. This paper
addresses the complementary problem of waveform design
to maximize insensitivity to motion. Insensitivity is
desirable in cases where motion is a nuisance to the sensor
system. For example consider a bat flying toward a tree
[2]. The bat perhaps wants to know where the tree is
located independent of how the bat is maneuvering. A
velocity insensitive waveform would be advantageous in
this case. Another example is an airborne radar
experiencing motion drift due to inability to maintain
constant-velocity level flight, leading to coherent gain
loss.

The motion insensitivity problem has been approached
in the past using the trajectory diagram, related concepts
of trajectory ambiguity [1,3-6], and generalized ambiguity
functions [2]. This paper discusses aspects of motion
insensitivity in terms of both trajectory ambiguity and the
generalized ambiguity function. The relationship between
trajectory ambiguity and motion insensitivity via a
generalized ambiguity function is described

mathematically. The hyperbolic FM (HFM) signal is used
as an example of a velocity insensitive signal.

This paper is organized as follows: Section II reviews
the trajectory model for specular targets in a linear time-
varying channel. Section III discusses trajectory ambiguity
and motion insensitivity in phase. Finally, Section IV
discusses the generalized ambiguity function approach to
motion insensitive signal design and its relationship to
trajectory ambiguity.

2. TRAJECTORIES IN A LINEAR CHANNEL

Trajectories can be described mathematically with a
linear, time-varying channel model. For an active sensor
this model is

0
( ) ( 2 ) ( , )y t s t h t dλ λ λ λ

∞
= − −

�
(1)

where s(t) is the transmitted signal, y(t) is the received
signal, λ is range in units of time, and h(λ, t) is the time-
varying impulse response of the channel. One spatial
dimension is considered (pencil beam). The channel
includes both target and multipath components, but for
simplicity only "target" components are discussed. This
model can be applied to radar, sonar, and other active
sensors.

A dimension of information is lost in (1) and,
regardless of the representation, the process is not
generally reversible without ambiguity. This loss of
information is the result of mapping the two-dimensional
channel, h(λ,t), to a one-dimensional receive signal, y(t),
via a linear operation with the transmitted signal: a
projection of h onto a reduced dimension subspace defined
by the signal.

Trajectories can be introduced into the model as
specular (mirror-like) moving targets. A specular target
can be modeled using a delta function. A delay that
depends on the range to the target is applied to the delta
function. Target motion is incorporated by allowing the
range-dependent delay to vary with time. With a single
trajectory this yields an impulse response of

( , ) ( ( ))h t r tλ α δ λ= − (2)
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where α is the target amplitude and r(t) is the time-
dependent range describing the motion path (trajectory) of
the target. After adjusting the impulse response for
propagation delay, (2) becomes

( , ) ( ( ))h t r tλ λ α δ λ λ− = − − . (3)

Given that the target's range-rate does not exceed the
speed of propagation, ( ) 1r t <

�

, there is exactly one root

of the argument of the delta function (one solution to
( )r tλ λ= − ). Dot notation is used for the derivative with

respect to time, ( ) ( )r t r t t≡ ∂ ∂
�

. The impulse response in

(3) is substituted into (1) to yield

( ) ( ( ))y t s t f tα= − , (4)

where f(t) is the function that solves the root of the delta
functional in (3).

As an example consider a constant velocity case with a
specular target trajectory given by

0( )r t r vt= + (5)

where r0 is the target range at t equal to zero, and v is the
target range rate. Substituting (5) into the argument of the
delta function in (3) and solving the argument for zero
gives

0 ( )r v tλ λ= + −
which simplifies to

0

1

r vt

v
λ +

=
+

. (6)

Substituting the solution for λ in (6) into s(t - 2λ) and
manipulating into the form of (4) yields the distortion
function

02 2
( )

1 1

r v
f t t

v v
= +

+ +
. (7)

The distortion function of (7) indicates the signal received
from a constant velocity target will experience a time
delay (constant term) plus a time scaling (linear term).

3. TRAJECTORY AMBIGUITY

Active sensor ambiguity can be represented in terms of
ambiguous range versus time trajectories [4,5,7]. Using a
trajectory ambiguity representation offers insight into a
system's capability to resolve multiple targets exhibiting
complex motion. Furthermore, the relationship between
signal instantaneous frequency and trajectory ambiguity is
useful for signal design.

For FM signals a phase ambiguity condition can be
expressed as

1 2( ( )) ( ) 2t f t t nφ φ π− = + (8)

where φ1(t) and φ2(t) are the phase functions of two
signals, f(t) is the distortion function as described in (1)-
(4), and n is an integer. Pairs of signals satisfying (5) are
ambiguous in phase, and a receiver cannot discriminate
between them. If (8) is solved using φ1(t) equal to φ2(t) an
auto-ambiguity representation is obtained in the “trajectory
domain.” Solving for different phase functions yields a
cross-ambiguity representation.

As an example of trajectory auto-ambiguity, consider a
hyperbolic FM (HFM) signal (linear period modulation).
Figure 1 shows a set of ambiguous target trajectories for
an example HFM signal. Figure 2 shows the
corresponding velocities for each of the trajectories in
Figure 1.

Figure 1. Example ambiguous trajectories for Hyperbolic FM
(HFM) signal. Each trajectory is constant velocity.
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Figure 2. Velocity vs. time of ambiguous trajectories for
HFM signal

The trajectories described by Figures 1 and 2 are constant
velocity. It follows that the example HFM signal is
insensitive in phase to the velocities shown in Figure 2.
The edge regions with closely spaced trajectories in
Figures 1 and 2 contain trajectories approaching the speed
of sound (slope equal to one in Figure 1).

Equation (8) can be offset by π to solve for maximum
sensitivity:

1 2( ( )) ( ) 2t f t t nφ φ π π− = + + . (9)

For an HFM signal this will also yield constant velocity
trajectories. For the example in Figures 1 and 2 the
trajectories solving (9) lie between the ambiguous
trajectories. The region of insensitivity can thus be
characterized as a range of velocities with an extent that is
small relative to the trajectory spacing and is periodic as
indicated in Figure 2. As signal bandwidth is lowered the
trajectory spacing will increase, increasing the effective
range of insensitive velocities.

4. TRAJECTORY AMBIGUITY RELATIONSHIP
TO AMBIGUITY FUNCTION INSENSITIVITY

Signal design for motion insensitivity has been treated
in [2] using a generalized form of the ambiguity function.
This section demonstrates how the ambiguity function
approach is related to the trajectory ambiguity view of
insensitivity.

Ambiguity function insensitivity to motion

A generalized ambiguity function for time delay and time
distortion is given by

*( , ) 1 ( ) ( ) [( ) ( )]uA f t s t s t f t dtτ ε ε τ τ ε τ
∞

−∞
= − − − − −�

�

(10)

where τ is time delay, f(t - τ) is a time distortion function
equivalent to the distortion function described by (1) - (4),
s(t) is the transmitted signal, and ε is a scale factor for the
distortion [2]. Equation (10) generalizes the ambiguity
function to handle delay and an additive time distortion.

Along the τ axis (the time autocorrelation function of
the signal) for small τ, the square magnitude of Au is a

function of the RMS bandwidth of the signal, Bσ

2 2 2( ,0) 1u BA τ σ τ≈ − .

Larger 2
Bσ leads to a narrower time autocorrelation

function and smaller range resolution. A similar
relationship exists along the epsilon axis where the
distortion autocorrelation function is given by

222
1),0( εηε −≈uA (11)

where 2η , a function of the signal and the distortion

function, is analogous to 2
Bσ , a squared "bandwidth" with

respect to the distortion, f(t). Minimizing 2η minimizes the

sensitivity to the motion described by f(t), flattening the
ambiguity function along the motion distortion axis.

Motion Insensitivity in Phase

The generalized ambiguity function of (10) can be
used to derive a signal that maximizes phase insensitivity
to motion. The signal is assumed to have the form

( )( ) ( ) j tu t a t e φ= (12)

where a(t) is the amplitude of the signal and φ(t) is the

phase. The motion bandwidth 2η from (11) is a function of

both the amplitude and the phase of the signal. It is shown

in [2] that, for small epsilon, 2η can be minimized with

respect to the phase term by using a signal that satisfies

)(

1
)(

tKf
t =φ

�

. (13)

Thus motion sensitivity is minimized by matching the

instantaneous frequency of the signal, ( )tφ
�

, to the

reciprocal of the distortion function. Equivalently, (13)
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can be interpreted as matching the instantaneous period of

the signal, )(1 tφ� , to the distortion.

Connection to phase insensitivity results

The motion insensitivity results derived using the
ambiguity function are consistent with the trajectory
ambiguity results. To analyze the relationship, the phase
function in (12) can be expanded about ε equal to zero for
small ε to yield

)()()())(( ttfttft φεφεφ �−≈− .

Choosing a signal such that

Kttf =)()( φ�

yields the approximation

Kttft εφεφ −≈− )())((

which satisfies the trajectory ambiguity phase insensitivity
condition of (8) to within a constant. For larger ε higher
order terms can be included in the expansion to yield

)()(
!
)1(

)())(( )(

1

ttf
n

ttft nnn
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φεφεφ �
∞

=

−+=− . (14)

where ( ) ( )n tφ is the nth derivative of the phase function

with respect to time. Equation (14) specifies that for
complete phase insensitivity the nth derivative of signal
phase multiplied by the nth power of f(t) must be a
constant. There are only two cases where a complete
match is known to exist:

Linear distortion (constant velocity) and the hyperbolic
FM waveform

The linear distortion function in this case is given by
sttf =)( , and the corresponding signal instantaneous

frequency is tKt =)(φ� where K is a constant. Equation

(14) is satisfied considering

nnn tstf =)( , n
n

n t
n

K
t −

−

−
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)(φ

and thus

n
nn Cttf =)()( )(φ .

Constant distortion and constant frequency (CW)

The constant distortion function is given by τ=)(tf , and

the corresponding signal instantaneous frequency is

( )t Kφ =� where K is a constant. Since 1,0)()( >= ntnφ ,

equation (14) is satisfied for the CW case.

For other scenarios the insensitivity condition of (13)
is approximate, but by generalizing (10) the higher-order
terms of (14) can be matched as well. For example, the
additive distortion function in (10) cannot model arbitrary
velocity and acceleration simultaneously. By adding an
additional distortion parameter to the ambiguity function
this could be addressed.

5. CONCLUSION

Waveform design to maximize insensitivity to motion
is an important problem in cases where motion is a
nuisance to the active sensor system. In the past, design for
motion insensitivity has been approached using both
trajectory ambiguity and a generalized ambiguity function.
This paper discussed motion insensitivity as represented
by both approaches.

The generalized ambiguity function result obtains
phase insensitivity by matching the instantaneous period of
the signal to the distortion, effectively flattening the
ambiguity function along the motion axis. It was shown
how this result can also be derived using trajectory phase
ambiguity.

The flatness along a motion axis of the ambiguity
function (motion insensitivity) is analogous to sets of
ambiguous trajectories in the trajectory domain (trajectory
ambiguity). Both representations describe the same
underlying ambiguity, and both are useful tools for
understanding signal design for motion insensitivity.
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