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Abstract— The achievable accuracy for estimating the position
of a mobile station (MS) in terms of the Cramer-Rao Lower
bound (CRLB) has been well studied and accepted. For certain
class of layouts of an MS and base stations (BSs), termed
as ill-conditioned layouts here, the CRLB suggests that the
variance of estimation errors is infinitely large. In this paper,
we investigate how to overcome this problem in both analytical
and algorithmic aspects. The ill-conditioned layouts are classified
into two categories: layouts with an insufficient number of BSs
and those satisfying the condition of collinearity or coplanarity.
We investigate estimation schemes and error analysis for each
category. Accordingly, a geolocation method with adaptive di-
mensions is devised. Simulation results confirm effectiveness of
our method.

I. INTRODUCTION

The positioning accuracy1 in terms of the Cramer-Rao
Lower bound (CRLB) has been well accepted in the litera-
ture [1], [2]. For certain base station (BS) and mobile station
(MS) layouts, termed as ill-conditioned layouts herein, the
CRLB suggests that the variance of estimation errors becomes
infinitely large. A least square (LS) based solution using ridge
regression is proposed in [5], where the basic idea is to
introduce a small bias for achieving a significant variance
reduction.

In this paper, we pursue this problem in an intuitive manner.
First, ill-conditioned circumstances are classified into two cat-
egories: one with an insufficient number of BSs and the other
satisfying the condition of collinearity or coplanarity which is
to be defined in Section II. Then, by using the time-of-arrival
(TOA) based method, we investigate estimation schemes and
corresponding mean square errors (MSE) for each category.
It is shown that finite variance can be obtained, instead of
infinitely large variance suggested by the CRLB. Next, a
geolocation method with adaptive dimensions is proposed to
incorporate the analytical results. Simulation examples are
examined lastly.

The rest of the paper is organized as follows. Section II
introduces preliminaries of this topic. In Section III, we present
main analytical results. In Section IV, a geolocation scheme is
devised to improve the positioning accuracy in ill-conditioned
BS-MS layouts. Simulation examples are discussed in Sec-
tion V. A brief conclusion is made in last section.

1The geometric dilution of precision (GDOP) is also a well-discussed accu-
racy measure [3]. It can be derived as the CRLB with Gaussian measurement
errors [4].

II. PRELIMINARIES

Consider TOA positioning, where BSs receive a radio signal
transmitted from an MS. The MS position is to be estimated
based on propagation delays measured by the BSs. Denote the
MS position by vector p, where p = (x, y)T or (x, y, z)T

depends on problem formulation. The superscript “T ” stands
for transpose. Let B = {1, 2, · · · , B} be the set of indices of
the BSs, whose locations {pb, b ∈ B} are known. A delay (or
TOA) estimate obtained at the b-th base station (BSb) can be
written as

τ̂b = τb + εb, for b ∈ B, (1)

where τb = ‖pb − p‖ is the distance between the MS and
BSb , and the estimation error εb can be approximated by
a Gaussian random variable N (0, σ2

b ). Note that the above
equation is normalized with respect to the speed of light
c = 3 × 108m/s, thus is expressed in the unit of length. In
practice, the delay estimation can be implemented, e.g., by
Two-way Time Transfer technique or Double Token Exchange
TOA technique [6].

The Cramer-Rao Lower Bound (CRLB) sets a lower limit
for variance (or a covariance matrix) of any unbiased estimate
of an unknown parameter (or unknown parameters) [7]. The
positioning accuracy in terms of the CRLB has been well
discussed in the literature [1], [2], [8]. Denote an estimate
of p by p̂. The CRLB matrix is defined as the inverse of the
Fisher information matrix (FIM)

Ep
[
(p̂ − p)(p̂ − p)T

] ≥ J−1
p , (2)

where “A ≥ B” should be interpreted as non-negative definite-
ness of matrix (A − B), and Ep[·] stands for the expectation
conditioned on p. It can be shown [8] that

Jp = H · Λ · HT , (3)

where

Λ = diag
(
σ−2

1 , σ−2
2 , · · · , σ−2

B

)
, (4)

and the matrix H in 2-D and 3-D settings are

H2D =
(

cos φ1 cos φ2 · · · cos φB

sin φ1 sin φ2 · · · sin φB

)
, (5)
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and

H3D =

⎛
⎝ cos θ1 cos φ1 cos θ2 cos φ2 · · · cos θB cos φB

cos θ1 sinφ1 cos θ2 sin φ2 · · · cos θB sinφB

sin θ1 sin θ2 · · · sin θB

⎞
⎠ ,

(6)
respectively. The angle φb and θb are determined by the
positions of the MS and BSb as φb = tan−1 y−yb

x−xb
, and

θb = sin−1 z − zb√
(x − xb)2 + (y − yb)2 + (z − zb)2

.

Note that φb ∈ [0, 2π) and θb ∈ [−π/2, π/2]. The minimum
mean square error (MMSE) can be evaluated as the trace of
the CRLB matrix

P def=
[
E‖p − p̂‖2

]
min

= trace
(
J−1
p

)
. (7)

It is not difficult to show that P is infinitely large due to the
rank deficiency of the FIM in the following two categories of
MS-BS layouts, independent of the type of coordinate chosen:

1) A layout with an insufficient number of BSs. That is,
there is only one BS in two-dimension (2-D) geoloca-
tion, and one or two BSs in a 3-D setting.

2) A layout with the condition of collinearity in a 2-D or 3-
D formulation or coplanarity in a 3-D formulation. The
collinearity (or coplanarity) means that all BSs and an
MS of interest are located on a straight line (or on a
plane).

III. ANALYSIS FOR ILL-CONDITIONED MS-BS LAYOUTS

In this section, concrete estimation schemes are developed
and corresponding MSEs are derived for each category of the
ill-conditioned layouts specified in the previous section.

A. Category 1: layouts with an insufficient number of BSs

A.1. One BS in a 2-D formulation
When only one delay estimate, say τ̂1, is available, an MS

position estimate can be anywhere on the circle with radius τ̂1

and center (x1, y1). Specifically, a polar coordinate with origin
(x1, y1) is adopted for simplicity. Denote the position estimate
by (ρ̂, ψ̂). The estimation scheme is that ρ̂ = τ̂1 and angle ψ̂ is
selected according to the uniform distribution within [0, 2π).
Note that ρ̂ is a Gaussian random variable with N (τ1, σ

2
1).

Hence, the MSE can be derived as

E‖p − p̂‖2

=
1

(2π)3/2σ1

∫ +∞

0

∫ 2π

0

[
(ρ̂ cos ψ̂ − x)2

+(ρ̂ sin ψ̂ − y)2
]
· exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dψ̂ dρ̂

=
1√

2πσ1

∫ ∞

0

[
ρ̂2 + τ2

1

]
exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dρ̂

≈ 1√
2πσ1

∫ ∞

−∞

[
ρ̂2 + τ2

1

]
exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dρ̂

(assuming τ1 >> σ1)
= 2τ2

1 + σ2
1 < ∞, (8)

which is a finite value. In some situations, the angle ψ̂ can be
confined to certain region denoted by [−α, α] with α ∈ [0, π).
Then the MSE can be improved as

E‖p − p̂‖2

=
1√

2πσ1

∫ +∞

0

1
2α

∫ α

−α

[
(ρ̂ cos ψ̂ − x)2

+(ρ̂ sin ψ̂ − y)2
]
· exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dψ̂ dρ̂

≈ 2τ2
1 + σ2

1 − 2xτ1 sin α/α. (9)

Note the hybrid TOA/AOA(angle-of-arrival) scheme
with one BS can be seen as a special case of the one-BS
geolocation scheme discussed here, except that ψ usually
follows a Gaussian distribution.

A.2. One BS in a 3-D formulation
Similarly, we adopt a spherical coordinate with the origin at

BS1’s location for one-BS 3-D geolocation. Let the true MS
position be (ρ, θ, ψ). The position estimate is on the sphere
of radius ρ̂ = τ̂1 with θ̂ and ψ̂ uniformly distributed within
[0, π] and [0, 2π), respectively. The MSE is derived as

E||p̂ − p||2

=
1

23/2π5/2σ1

∫ +∞

0

∫ π

0

∫ 2π

0

[
(ρ̂ cos θ̂ − ρ cos θ)2

+(ρ̂ sin θ̂ cos ψ̂ − ρ sin θ cos ψ)2 + (ρ̂ sin θ̂ sin ψ̂

−ρ sin θ sin ψ)2
]
exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dψ̂ dθ̂ dρ̂

≈ 2τ2
1 + σ2

1 . (10)

When additional information is available to limit ψ̂ ∈ [−µ, µ]
and θ̂ ∈ [ν, π− ν] with µ ∈ [0, π) and ν ∈ [0, π/2), the MSE
is modified as

E||p̂ − p||2

=
1√

2πσ1

∫ +∞

0

1
π − 2ν

∫ π−ν

ν

1
2µ

∫ µ

−µ

[
(ρ̂ cos θ̂ − ρ cos θ)2

+(ρ̂ sin θ̂ cos ψ̂ − ρ sin θ cos ψ)2 + (ρ̂ sin θ̂ sin ψ̂

−ρ sin θ sin ψ)2
]
exp

{
− 1

2σ2
1

(ρ̂ − τ1)2
}

dψ̂ dθ̂ dρ̂

≈ 2τ2
1 + σ2

1 − 4 cos ν sin µ

µ(π − 2ν)
xτ1, (11)

where
x = ρ sin θ cos ψ.

A.3. Two BSs in a 3-D formulation
Suppose two delay estimates, τ̂1 and τ̂2, are available. We

first review a 2-D solution. Without loss of generality, let p1 =
(x1, 0)T and p2 = (x2, 0)T , and an MS position be p =
(x, y). A position estimate p̂ = (x̂, ŷ)T conforms to the
joint Gaussian p.d.f conditioned on p:

f(p̂|p) =
|Jp|1/2

2π
exp

{
−1

2
(p̂ − p)T Jp(p̂ − p)

}
, (12)
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where Jp is the FIM given in Eq. (3) with H = H2D.
Re-formulate the problem in a 3-D setting using a cylindri-

cal coordinate. The MS position is then given by (ρ, ψ, z) with
z = x and ρ = y. An estimate scheme is devised as ρ̂ = ŷ,
ẑ = x̂ and ψ̂ is selected according to the uniform distribution
within [0, 2π). It can be shown that the corresponding MSE is

E||p̂ − p||2

=
1
2π

∫ +∞

−∞

∫ +∞

0

∫ 2π

0

[
(ρ̂ cos ψ̂ − ρ cos ψ)2 + (ρ̂ sin ψ̂

−ρ sin ψ)2 + (ẑ − z)2
] · f(p̂|p) dψ̂ dρ̂ dẑ

= σ2
x + σ2

y + 2y2, (13)

where
σ2

x =
[
J−1
p

]
11

, σ2
y =

[
J−1
p

]
22

, (14)

and [A]nn means the n-th diagonal term of matrix A.

B. Category 2: layouts satisfying the condition of collinearity
or coplanarity

B.1. A collinear scenario
When all BSs and an MS are aligned, the geolocation is

essentially a one-dimension problem. Accordingly, we modify
the delay estimates in Eq. (1) as

τ̂b = ±(x − xb) + εb, for b ∈ B, (15)

where xb and x are the positions of BSb and the MS,
respectively. It is assumed that there is sufficient information
to determine the sign in front of (x−xb) in the above equation.
The maximum likelihood estimate of the MS position can be
shown as a weighted sum

x̂ =
B∑

b=1

wb · (xb ± τ̂b) , (16)

where

wb =
1/σ2

b
B∑

i=1

1/σ2
i

. (17)

The MSE is

var(x̂) =
B∑

b=1

w2
b · var(τ̂b) =

1∑B
b=1 1/σ2

b

. (18)

B.2. A coplanar scenario
First identify the plane where the BSs and the MS locate,

and then apply a conventional 2-D scheme. The MSE is given
in terms of the CRLB as

E||p̂ − p||2 = trace
(
J−1
p

)
,

=
c2

8π2β2
·

∑
b∈B

Rb∑ ∑
b1,b2∈B

Rb1Rb2 sin2(φb1 − φb2)
, (19)

where Jp is given in Eq. (3) with H = H2D.

C. Discussions

There is an essential difference between the above two
categories of geolocation. In the first category, the geolocation
itself is a “full dimension” problem, yet observations (i.e.,
delay estimates) are only sufficient to locate the MS in
some dimensions, while leaving estimation in the remaining
dimension(s) completely or partly unconstrained. For example,
in the case A.1, the radius ρ̂ can be determined as τ̂1, but
the angle ψ can be any value within [0, 2π) or [−α, α].
In contrast, geolocation in the second category is a reduced-
dimension problem. Reformulation in appropriate dimensions
is the solution.

IV. A GEOLOCATION SCHEME WITH ADAPTIVE

DIMENSIONS

By incorporating the analytical results obtained in the pre-
vious section, we propose a geolocation scheme with adaptive
dimensions for ill-conditioned MS-BS layouts. Specifically,
the scheme includes five steps:

1) Determine if there are a sufficient number of BSs.
Typically, two and three BSs are the least requirements
for 2-D and 3-D positioning, respectively.

2) If there are not enough BSs, which belongs to Category
1, we adopt the estimation schemes specified in Sec-
tion III-A. The corresponding MSE is given in Eq. (8),
(11) or (13), which can be used to examine whether the
current estimate satisfies certain threshold or not. Such
a threshold depends on the type of geolocation service,
say 100m for E-911 service.

3) If there are a sufficient number of BSs, examine whether
the BSs are collinear or coplanar.

4) If the BSs are collinear or coplanar, we further check
whether the MS is in the reduced-dimension space (i.e.,
the line or the plane determined by the BSs) or its
neighborhood according to one of the following three
types of information:

• Prior information, such as position and speed es-
timates in an earlier instant in a position tracking
procedure.

• Unfeasible converging points when a conventional
“full-dimension” scheme is applied.

• Unreliable computation when a gradient-based op-
timization technique is adopted, which is due to
inverse of some rank-deficient matrix.

5) If the BSs and MS are collinear or coplanar, reformulate
the problem with appropriate dimensions. Otherwise
employ a conventional scheme.

Besides the improved positioning accuracy, the major ad-
vantages of the proposed approach include reduced computa-
tional complexity and predictable positioning errors.

V. SIMULATION RESULTS

In this section, we investigate simulation results for two
dimensional geolocation. The square root of the MSE (RMSE)
is adopted as the measure of positioning errors. One thousand
simulation runs are executed to evaluate the RMSE.
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A. Geolocation with one BS

Assume there is only one BS (BS1) available. Let the posi-
tions of BS1 and an MS be (0, 0) and (200, 0), respectively.
The scheme given in Section III-A is used. The standard
deviation of the delay estimate τ̂1, σ1, is set to be 10m.
Figure 1 illustrates the performance curve of the RMSE vs.
α together with the curve determined by the analytical result
of Eq. (9) . The performance curve is well predicted by the
analytical result. It is seen that the positioning error RMSE
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Fig. 1. The performance curve of the RMSE (in meter) vs. angle α (in
degree) with σ1 = 10m, denoted by the line with “∗”, compared with the
curve corresponding to the analytical curve with “◦”.

can be small, say less than 100m, in a one-BS layout, if α is
below certain value, e.g., 60◦ in this case.

B. Geolocation with quasi-collinearity of the BSs and an MS

Assume four BSs are lined up with location coordinates
(−3000, 0), (−1000, 0), (1000, 0) and (3000, 0). An MS is at
(600, 8), which is close to the line y = 0. Let the standard
deviation of a delay estimate at the distance of 2000m from
the MS be σ0. Deviations of delay estimates at the BSs are
evaluated with path loss factor 2 accordingly.

Two schemes are adopted for position estimation. One is
the conventional 2-D maximum likelihood (ML) method. The
other is the 1-D scheme described in Section III-A.3. The
initial estimate (600, 18) is used in searching steps for the 2-
D scheme. Figure 2 shows the RMSE vs. σ0 using the two
schemes compared with the curve determined by the analytical
result of Eq. (18). It is seen that the 1-D scheme can achieve a
better position accuracy than the conventional 2-D scheme. In
addition, since the 1-D estimation has an algebraic solution, it
requires a much less computational load than the 2-D scheme
that involves iterative searching steps.

VI. CONCLUSIONS

In this paper, we investigate geolocation schemes and ac-
curacy in ill-conditioned MS-BS layouts. Instead of infinitely
large error variance suggested by the CRLB, we show that
finite (and sometimes rather small) error variance can be
obtained when appropriate schemes are applied. A geolocation
method with adaptive dimensions is proposed to improve
the positioning accuracy in the ill-conditioned layouts. Its
effectiveness is confirmed by simulation results.
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Fig. 2. The performance curves of the RMSE (in meter) vs. σ0 (in
meter) using the conventional ML 2-D scheme (the top curve) and the
proposed 1-D scheme (the curve in the middle), compared with the
curve corresponding to the analytical result (the bottom curve).
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