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ABSTRACT
We propose a novel framework to design a stream cipher based
on wavelets over finite fields. Encryption and decryption are per-
formed by inverse wavelets and their corresponding wavelet trans-
forms. The system is iterative with each round consisting of two
wavelet systems and a nonlinear feedback in the encryption and
a nonlinear feed-forward in the decryption. The input to the pro-
posed wavelet stream cipher (WSC) is a sequence in the Galois
field GF(28). The key consists of 16 symbols of GF(28) that
specify the wavelet systems. The security of the system relies on
the difficulty of solving nonlinear equations over finite fields which
is known to be NP-complete. We have studied the vulnerability of
our system to several attacks. Our studies show that although one
round might be vulnerable, two rounds resists against all known
attacks.

1. INTRODUCTION

Stream ciphers are cryptographic tools used to encrypt a stream
of digital data. They are more appropriate for applications where
buffering is limited or when data must be individually processed
as they are received. Since they have limited or no error propaga-
tion, stream ciphers may also be advantageous in situations where
transmission errors are highly probable. The stream cipher RC4
is widely used since it is very fast in software implementation [1].
Although no feasible attack has been found on RC4, it is believed
to be insecure [2, 3].

In [4], we show that finite-field wavelets can be used to design
efficient block ciphers. In this paper, we extend those ideas and
propose a new approach in designing stream cipher based on finite-
field wavelets. At the core of our proposed scheme is a wavelet
transform that operates over the Galois field GF(28). Since this
transform is linear, we also employ nonlinear mappings in the sys-
tem. The proposed WSC is an iterative cryptosystem. One round
of the encryption system consists of two wavelet transforms and
a nonlinear mapping in the main path connecting the input to the
output and also a nonlinear feedback. The key consists of 16 sym-
bols from GF(28) that are exchanged between users by the Diffie-
Hellman key exchange protocol. The key symbols are used to set
up the wavelet transform.

In Section 2, we briefly review the filter bank realization of
wavelets. We provide a linear time-variant model for wavelets in
Section 3 that is used to investigate the security of WSC. The basic
round of the WSC is proposed in Section 4. In Section 5, we study
the vulnerability of the WSC to some attacks. Finally, Section 6
gives the concluding remarks.

Notation: The Galois field GF(2q) is denoted by F2q or F
when the value of q is not important. The symbol N0

n is defined

as N0
n � {0, 1, . . . , n}. The variable n is used for time-domain

signals and the variable z for signals in the z domain. A matrix A

is called unitary if AT
A = I. A matrix E(z) over the ring F[z−1]

is called paraunitary (PU) if E
T (z−1) E(z) ≡ I.

2. REVIEW OF THE WAVELET TRANSFORM

The filter bank realization of the wavelet is shown in Figure 1. The
analysis bank realizes the wavelet transform that consists of the
FIR filters g̃0(n) and g̃1(n) of odd length L. (It is proved in [5]
that L is always odd.) The inverse wavelet transform is realized by
the synthesis bank consisting of the FIR filters h̃0(n) and h̃1(n) of
the same length. If E(z) = [Eij(z)] and R(z) = [Rij(z)] are the
polyphase matrices of the analysis and synthesis banks, then [6]

G̃i(z) = Ei0(z
2) + z−1Ei1(z

2) (1a)

H̃i(z) = z−1R0i(z
2) + R1i(z

2). (1b)

When the polyphase matrix is PU, the two filters in the analysis
bank are polynomial inverses of each other [6], i.e.,

G̃1(z) = z−LG̃0(z
−1) (2)

where L is the order of the filters. The same is true for the filters
in the synthesis bank.

We design the polyphase matrix of the filter bank as a PU ma-
trix since, by the following theorem, there are building blocks to
generate all 2×2 PU matrices over fields of characteristic two [5].

Theorem 1. A 2 × 2 matrix E(z) over F[z−1] is PU if and only
if it can be factorized as

E(z) =
N�

i=1

Ai D(z; vi)S2τi
(z; ζi) (3)

where Ai is either the identity or a unitary matrix and the building
blocks D and S respectively are:

x(n) � g̃0(n)

g̃1(n)

↓ 2

↓ 2

↑ 2

↑ 2

h̃0(n)

h̃1(n)

+ y(n)
u0(n)

u1(n)

� �� � � �� �
Analysis Bank Synthesis Bank

Fig. 1. Two-band filter bank.
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1. The degree-one building block

D(z; v) � I + vv
T + vv

T z−1 (4)

where v ∈ F
2 is either zero or v =

�
a, 1 + a

�T
for some

a ∈ F.

2. The degree-2τ building block

S2τ (z; ζ) � ζ

�
1 1
1 1

�
+ Iz−τ + ζ

�
1 1
1 1

�
z−2τ (5)

where ζ ∈ F and τ is a nonnegative integer.

If the numbers of the D and S building blocks in (3) are d and s, re-
spectively, then the degree of the PU matrix E(z) is d+2

�s

i=1 τi.

By this theorem, if we ignore the unitary matrices in (3), in
order to design a 2 × 2 PU matrix, we must know

1. The number of D and S building blocks denoted by d and
s, respectively.

2. Degrees 2τ1, . . . , 2τs of the S building blocks.

3. The vector vi and the constant ζi in the D and S building
blocks, respectively.

4. The order in which building blocks are multiplied together.
(Since the S building blocks commute, we avoid the arrange-
ments in which these building blocks are adjacent in order
to prevent decreasing the number of effective keys.)

All this information is assumed to be public except the vectors
vi and the constant ζi that are determined using the secret key.
The secret key consists of K = d + s randomly chosen elements
from F that are exchanged using the Diffie-Hellman key exchange
protocol or any public-key scheme.

By Theorem 1, the degrees of the PU matrix E(z) is d +

2
�s

i=1 τi. Hence, from (1a), the degree of G̃i(z) as a polyno-
mial is L = 2

�
d + 2

�s

i=1 τi

�
+ 1. If τi = τ for all i, then

L = 2K + 2(2τ − 1)s + 1. (6)

For the typical values K = 16, s = 1, and τ = 1, we get L = 35.

3. LINEAR TIME-INVARIANT MODEL OF THE
WAVELET

In this section, we modify the structure of the filter-bank realiza-
tion of the wavelet transform to suit in designing a stream cipher.
We also give linear time-invariant models of the given structures.

The systems in Figures 2 and 3 can be considered as a wavelet
transform and its inverse. We use these structures in our stream
cipher design since each of them has a single input and a single
output in contrary to the analysis and synthesis banks of the filter
bank in Figure 1.

X(n) g̃0(n) ↓ 2 ↑ 2 + Y (n)

g̃1(n) ↓ 2 ↑ 2

�

U0(n)

U1(n)

V0(n)

V1(n)
z−1

Fig. 2. Modified wavelet transform.

X(n) ↓ 2 ↑ 2 h̃0(n) + Y (n)

↓ 2 ↑ 2 h̃1(n)

�

z−1

U0(n)

U1(n)

Fig. 3. Modified inverse wavelet transform.

It can be easily verified that the input and output of the system
in Figure 2 are related as

Y (n) =
∞�

k=−∞

g(n, k) X(k) (7)

where

g(n, k) =

�
g̃0(n − k), n even
g̃1(n − k − 1), n odd.

(8)

The filter g(n, k) can be considered as the kernel of a linear time-
variant (LTV) system with the following properties:

Causality: The filters g̃0(n) and g̃1(n) are designed to be causal.
Therefore, g(n, k) = 0 for n < k.

Odd Indices: By definition, g(n, n) = g̃1(−1) when n is odd.
Since g̃1(n) is causal, we have g(n, n) = 0 for odd n.

Periodicity: By (8), g(n + 2, k + 2) = g(n, k). Hence, g(n, k)
is completely known if we learn about g(n, k) when the second
argument k is restricted to N

0
1.

It can be easily shown that the LTV model of the system in
Figure 3 is as follows

Y (n) =

∞�
k=−∞

h(n, k) X(k) (9)

where

h(n, k) =

�
h̃0(n − k), k even
h̃1(n − k − 1), k odd.

(10)

4. THE BASIC ROUND OF THE WSC

The wavelet transform introduced in the previous section, is used
to scramble the plaintext. Equation (7) reveals that the output
of the filter g(n, k) is a linear combination of the coefficients of
g(n, k) that are unknown to the adversary. Since convolution is a
linear operator, we add some nonlinearity and suggest the structure
of Figure 4 as the basic round of the wavelet encryption system.
In this figure, h1 and h2, given by (10), are the LTV systems of
the two inverse wavelet transforms and f is a nonlinear function.
Since the mapping f is located at the feedback, we also include
a unit delay. The information about the function f is stored in a
public directory. The mapping (·)d is another nonlinearity where

P (n)

R(n)

+ h2(n, k)

f(·)

� (·)d h1(n, k) C(n)
X(n)

Fig. 4. One round of the WSC.
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d > 1 is a positive integer that will be determined later in this
section. All sequences are assumed over F28 .

The filters h1(n, k) and h2(n, k) are designed by constructing
two PU matrices as explained in Section 2. The key symbols and
a bit-permutation of their concatenation are used as the parameters
of these PU matrices. In other words, if K is the bit string obtained
by concatenating the K key symbols from F, then the two PU
matrices are designed using K and σ(K) where σ, a permutation
on K|F| elements, is public. For more than one round of the WSC,
all PU matrices are designed using public bit-permutations of K.

The random time-limited sequence R(n) is added to P (n) at
the input of the system to mask the plaintext. (If there is more than
one round of the system, R(n) is added only to the input of the first
round.) This sequence is changed for every new plaintext stream.
Because of the feedback, R(n) affects all the ciphertext symbols.
This makes the encryption system very hard to attack. The output
of the decryption system is P (n) + R(n). Since R(n) = 0 for
n ≥ nR, where nR is a fixed positive integer, then only the first nR

symbols of the decrypted sequence are affected by R(n) and must
be ignored since the decryption system does not know R(n). The
protection we gain by using R(n) worths ignoring a few symbols.

The equations relating the plaintext and ciphertext are

X(n) =
n�

k=0

h2(n, k)
�
P (k) + R(k) + f(X(k − 1))

�
(11a)

C(n) =
n�

k=0

h1(n, k) Xd(k). (11b)

The basic round of the decryption system is depicted in Fig-
ure 5. Here, as in (8), g1(n, k) and g2(n, k) are the LTV systems
of the two wavelet transforms. They undo the effects of h1(n, k)
and h2(n, k) respectively. The mapping (·)m undoes the effect of
(·)d.

Inspired by the design of the S-box in AES [7], we suggest
using the inversion function for the mapping f , i.e.,

f(x) =

�
x−1 x �= 0

0 x = 0.
(12)

Equations describing the decryption system are

X(n) =
n�

k=0

g1(n, k)C(k) (13a)

P (n) =
n�

k=0

g2(n, k)Xm(k) + f(Xm(n − 1)). (13b)

Integers d and m are chosen such that xdm = x for all x ∈ F,
i.e., m ≡ d−1 (mod |F| − 1). Since the characteristic of the
field is two, d and m should not be powers of two. Moreover,
they should have high hamming weights (the number of ones in

C(n) g1(n, k) (·)m � g2(n, k)

f(·)

+ P (n)
X(n) Y (n)

Fig. 5. One round of the decryption system.

their binary expansions). This is because if c =
�B

i=0 ci2
i, where

ci ∈ N
0
1, is the binary expansion of the positive integer c, then for

x ∈ F, we have xc =
�B

i=0
ci=1

x2i

where each term x2i

is F-linear.

We suggest d = 248 and m = 182 to satisfy these criterion.

5. CRYPTANALYSIS OF THE WSC

Because of the feedback in the encryption, the ciphertext symbol
C(n) at time instance n is related to all symbols of the plaintext
P (k) at time instances k ∈ N

0
n. Moreover, the presence of the

random sequence in the encryption makes the cryptanalysis of the
encryption very hard. Therefore, all the attacks we study in this
section are focused on the decryption. The realistic scenario is the
chosen-ciphertext attack: the adversary has limited access to the
decryption algorithm, so he can choose a few arbitrary ciphertexts,
decrypt them, and analyze the resultant plaintext-ciphertext pairs.
However, the adversary’s goal is having the ability to decrypt all
ciphertext messages that he receives.

Exhaustive search is infeasible since if the secret key consists
of K symbols fromF28 , then the size of the key space is |F28 |K =
28K . For K ≥ 16, we have 28K ≥ 2128. In this section, we
explore the resistance of one and two rounds of the WSC against
some known attacks: Gröbner basis and interpolation attack. We
also propose a new attack called delta attack. Our studies show
that one round is vulnerable to this attack. However, two rounds
are resistant.

5.1. Gröbner Bases

Gröbner bases is a tool for solving systems of polynomial equa-
tions [8]. From (13), in one round, there is an algebraic equation
relating the ciphertext C to the plaintext P with the coefficients of
g1(n, k) and g2(n, k) as 2(L + 1) unknowns. Combining the two
equations (13), we get a multivariate polynomial consisting of two
homogenous parts of degrees m and 2m+1. Algorithms for com-
puting the Gröbner basis are exponential time [8]. However, for
small values of m and L, solving this equation might be feasible
using the fast algorithm of [9]. For the typical values of m and L
in our system, computing the Gröbner basis for one round seems
to be infeasible. For two rounds, equations are more complicated
and involve more variables. Hence, the complexity of attacking
more than one round by computing Gröbner basis is even higher.

5.2. Interpolation Attack

In this attack, the adversary establishes an algebraic relation be-
tween the plaintext and the ciphertext with unknown coefficients
[10]. Using a set of plaintext-ciphertext pairs, the adversary is able
to construct a system of linear equations in the unknown coeffi-
cients. Solving this linear system, the adversary can decrypt any
ciphertext without knowing the key.

To apply this attack to one round of the WSC, we observe
that X(n) in (13a) is a polynomial over F28 in ciphertext symbols
C(n − L − 1)), . . . , C(n). Similarly, P (n) in (13b) is a polyno-
mial in X(n−L−1), . . . , X(n). Hence, P (n) is a polynomial in
ciphertext symbols. The number of monomials of this polynomial,
given by the following lemma, determines the size of the final sys-
tem of linear equations.

Lemma 1. Given f as (12), P (n) in (13) is an (2L + 3)-variate

polynomial with at most (L + 2)�++1 + (L + 2)�− monomials
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where �+ and �− are the hamming weights of m and 255 − m,
respectively.

Proof. For a fixed large value of n, the term g2(n, k)Xm(k) in
(13b) is a polynomial in C(k − (L + 1)), . . . , C(k). The sum-
mation term of P (n) in (13b) is a polynomial in C(n − 2(L +
1)), . . . , C(n). The term Xm(n− 1) inside the function f is also
a polynomial in C(n− (L + 2)), . . . , C(n− 1). Therefore, P (n)

is a (2L + 3)-variate polynomial. Xm(k) in (13b) has (L + 2)�+

monomials. The summation in this equation has at most L + 2

nonzero terms that leads to the total of (L + 2)�++1 monomials.

The term f(Xm(n− 1)) in P (n) has (L + 2)�− monomials.

For m = 182, we have �+ = 5 and �− = 3. For the typi-
cal value of L = 35, the number of monomials is approximately
231. Finding 231 unknowns from a system of linear equation has
complexity O(293) even using fast algorithms such as LUP de-
composition [11]. Hence, the interpolation attack is infeasible on
one round and henceforth on two rounds of the WSC.

5.3. Delta Attack

This is a chosen-ciphertext attack. A number of ciphertext streams
are chosen and applied to the decryption system. Using the output
plaintext streams, it is possible to recover the coefficients of the
filters g1(n, k) and g2(n, k) in one round of the WSC.

In this attack, the adversary feeds the system with two cipher-
text streams Cn0i(n) = αiδ(n − n0) where n0 ∈ N

0
1, αi ∈

F\{0}, and i = 1, 2. We require α1 �= α2. By (13), we can write

Pn0i(n) = αm
i

n�
k=0

g2(n, k)gm
1 (k, n0)� �� �

G(n,n0)

+f(αm
i gm

1 (n − 1, n0)).

(14)
Using two ciphertext-plaintext pairs (Cn01, Pn01) and (Cn02, Pn02),
we obtain a system of two equations that can be solved for g1(n−
1, n0) as follows

g1(n − 1, n0) =

�
(α2/α1)

m + (α1/α2)
m

αm
2 Pn01(n) + αm

1 Pn02(n)

�d

. (15)

Hence, the adversary is able to recover the coefficients of g0(n, k)
and those of g1(n, k) by (2).

For two rounds of the system, the corresponding equation is

Pn0i(n) =
n�

k=0

g4(n, k)

�
αm

i G(k, n0)

+
k�

j=0

g3(k, j)f(αm
i gm

1 (j − 1, n0))

�m

+ f

	�
αm

i G(n − 1, n0)

+

n−1�
k=0

g3(n − 1, k)f(αm
i gm

1 (k − 1, n0))

�m

(16)

where G(n, k) consists only of a combination of the coefficients
of the filters gi(n, k) for 1 ≤ i ≤ 4. Considering the number of
unknowns, there does not seem to exist a polynomial-time algo-
rithm to solve this equation for the unknowns except computing
the Gröbner basis. Hence, the delta attack is infeasible on two
rounds of the system.

6. CONCLUSION

A new iterative stream cipher, called WSC, based on wavelets over
finite fields is introduced in this paper. One round of the WSC
consists of two wavelet transforms that are implemented by fil-
ter banks. Since wavelet transform is a linear operator by itself,
a nonlinear feedback is employed in the encryption and a nonlin-
ear feed-forward in the decryption. The input to the system is a
sequence of symbols from GF(28). The key consists of 16 sym-
bols from GF(28) that are exchanged using the Diffie-Hellman
key exchange protocol. They are used as the parameters of the PU
building blocks that generate the wavelet system. One important
feature of the proposed system is to have a short-time random se-
quence that is added to the plaintext sequence before encryption.
This sequence enhances the security of the encryption system with
subtle extra computations. The study of the vulnerability of the
system has shown that one round of the WSC is vulnerable to the
delta attack. However, two rounds of the WSC is resistant against
this attack and the other explored attacks. Because the major oper-
ation of the wavelet transform is convolution, the proposed system
can be implemented efficiently in hardware.
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