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ABSTRACT

In this paper we describe an application of spread spec-
trum techniques in audio data hiding for watermarking and
steganography. The method is self-synchronizing, cover de-
pendent, and operates in the time domain. We use a special
class of frequency-hop signal know as a Welch-Costas Ar-
ray. Welch-Costas Arrays have the properties of range and
Doppler resolution. This allows us to recover embedded
data with a matched filter. We also demonstrate a special
case of an adaptive method due to Su and Girod [1].

1. INTRODUCTION

In spread spectrum communications, the bandwidth of a
transmitted signal is increased to afford protection from in-
terference. Spread-spectrum signals have applications in
jamming protection, hidden communications, and multiple
access systems. Due to the large bandwidth, reliable SNR
can be achieved with relatively low transmit power.

One form of spread-spectrum is frequency-hopped spread
spectrum (FHSS). In FHSS, we divide the time axis into
fixed length intervals and place a sinusoid in each interval
according to a pre-defined sequence of frequencies. This
sequence, known as the hop pattern, may be thought of as
an index into a finite set of frequencies. Typically the low-
est and highest frequencies, f0 and f1 are given by the user,
and the remaining frequencies are chosen automatically at
equally spaced intermediate values. Welch-Costas Arrays
are FHSS signals with good range and Doppler resolution.
In addition to these correlation properties, the FHSS tech-
nique, through the selection of parameters allows us to cre-
ate broadband noise-like waveforms.

A Welch-Costas Array is itself a candidate steganographic
signal. We can implement a system in the following manner.
Let wN [n] be an N point Welch-Costas Array. This signal
is defined to be 0 outside of the interval [1, N ]. The coeffi-
cients bi ∈ (−1,+1) in (1) represent the embedded binary
information. The signals x[n], w[n], and y[n] are resepc-
tively the cover, the steganographic signal, and the marked
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output. The constant η is a scaling parameter—watermark
strength—and φ ∈ Z

+ is an arbitrary phase shift we intro-
duce in order to demonstrate the self-synchronizing capa-
bility of the system. Note that, unlike the spread-spectrum
technique of [2], our method embeds data in the time do-
main.

w[n] =

M∑
i=1

biwN [n − iN ] (1)

y[n] = x[n] + ηw[n + φ] (2)

The embedded data can be recovered by applying a matched
filter. The output of the matched filter, evaluated at the end
of each frame is our estimate of the data.

m[n] = y[n] ∗ wN [−n] (3)

b̃i =

{
1, m[iN + φ̃] ≥ 0

−1, m[iN + φ̃] < 0
(4)

Following Su and Girod we feel that an improvement
can be made. In [1] they introduce the power-spectrum con-
dition for watermarking. A watermark is said to be PSC-
compliant when its power spectrum is proportional to the
power spectrum of the cover. Here, this can be achieved ap-
proximately in the following way. DFTs of x[n] and w[n]
are computed in N point non-overlapping blocks. The result
is a set of M N -point DFTs Xi[k], Wi[k], i = 1, . . . , M .
Each Wi is weighted by the magnitude of Xi and converted
back to the time domain. Once this is finished, the water-
mark can be inserted as in (2).

wPSC,i[n] = IFFT{|Xi[k]|Wi[k]} (5)

Su and Girod [1] focus on the issue of robustness for
watermarking. In particular, they prove that PSC-compliant
watermarks are optimally resistant to a Wiener Attack. Given
some long-standing results [3] [4] on coding for a channel
with side information, the approach of (5) is preferable to
that of (1) and (2) in the sense that in (5) the side informa-
tion is utilized. The side information is the steganographers’
knowledge of the cover. Furthermore, although (5) is not a
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QIM approach [5], our approach is similar in that it also
hides data by introdcing a cover dependent additive noise.

2. WELCH-COSTAS ARRAYS

As mentioned above, a Costas Array is a frequency-hop
signal with good range and Doppler resolution. In radar
terminology, we say that the auto-ambiguity function ap-
proaches an ideal thumbtack shape. A Welch-Costas Array
is a Costas Array with a specific algebraic construction. In
this paper, we do not especially exploit the Doppler resolu-
tion of the Welch-Costas Array. The time resolution, how-
ever, is an essential feature that allows us to recover the lo-
cation of frame boundaries from the matched filtering.

There is a natural relationship, through the notion of a
hop pattern, between FHSS signals and permutation matri-
ces. A permutation matrix is a matrix A = (aij), aij ∈
(0, 1) where each column and each row contain a single 1.
The rows of this matrix may be thought of as divisions in
frequency and the columns may be thought of as divisions
in time. When aij = 1 we place a sinusoidal pulse at the
appropriate time shift and frequency. The hop pattern can
be deduced simply from the columns of A. The fact that
A is a permutation matrix is equivalent to saying that only
one frequency is active per time division and that all of the
frequencies are visited exactly once over the total period.

Complete discussion of Welch-Costas Arrays can be found
in [6, 7, 8, 9]. The problem, as stated by J. Costas in [10] is,
Place N ones in an otherwise null N by N matrix such that
each row contains a single one as does each column. Make
the placement such that for all possible x-y shift combina-
tions of the resulting (permutation) matrix relative to itself,
at most one pair of ones will coincide. A permutation ma-
trix for which this is true is called a Costas Array (Here, we
confess to a slight abuse of terminology. For convenience,
the frequency hop signal itself, the hop pattern, and the per-
mutation matrix corresponding to the hop pattern are all re-
ferred to as a “Costas Array.” The sense in which the term
is intended, however, is usually clear from context ).

Suppose that p is a prime number and α is a primitive
root of p. A (p − 1) × (p − 1) permutation matrix A is a
Welch-Costas Array if the matrix elements are such that (6)
holds.

aij =

{
1, i ≡ αj mod p

0, otherwise
(6)

Let φ(n) denote the totient function. A prime number p

has φ(φ(p)) primitive roots. Each of these primitive roots
generates a different Welch-Costas Array. There are bounds
on the number of coincidences that can occur between any
two such arrays (“coincidences” as in Costas’ definition).

In particular, if α1 and α2 are primitive roots of the same
prime then the following equation will be true for some n.

α1 = αn
2 mod p (7)

Let (Aα1
,Aα2

) equal the number of coincidences oc-
curing between two Welch-Costas Arrays.

max
∀x,y shifts

(Aα1
,Aα2

) =

{
n, n ≤ p−1

2

−n mod p, n > p−1

2

(8)
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Fig. 1. Example of matched filter m[n] with visible peaks
at frame boundaries

3. DETECTION ALGORITHM

Our detection algorithm consists of two steps. First, the
phase φ in (1) must be determined from the output of the
matched filter (3). The signal m[n] is passed to a sorting al-
gorithm that retains the sample indices. The values of these
indices are taken modN and the class which is most cor-
related with the large sample values is assumed to be the
phase φ̃. The embedded bits are found according to the rule
in (4).
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4. EXPERIMENTAL RESULTS

We conducted simulations on a set of cover files represent-
ing a variety of commercially available music. The audio
clips were mono, 44.1 kHz, 16 bit PCM signals between 10
and 20 seconds long.

The results of three experimental runs are shown in Figs.
2, 3 and 4. The error rate, defined in (9), is plotted versus
the signal strength η.

e =

∑M

i=1

∣∣∣bi − b̃i

∣∣∣
2M

(9)

1 2 3 4 5 6 7 8 9 10

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
error rate, N = 4096

eta

er
ro

rs

Fig. 2. Error rate versus η. N = 4096, p = 499, α = 7,
f0 = 4000 Hz, f1 = 22050 Hz

5. SUMMARY AND CONCLUSIONS

We have demonstrated a frequency hopped spread-spectrum
technique for steganography in digital audio. The method
is self-synchronizing and cover dependent. In addition, it
allows a user easily specify the bandwidth of the stegano-
graphic signal.
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Fig. 3. Error rate versus η. N = 8192, p = 499, α = 7,
f0 = 4000 Hz, f1 = 22050 Hz
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Fig. 4. Error rate versus η. N = 16384, p = 499, α = 7,
f0 = 4000 Hz, f1 = 22050 Hz
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