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ABSTRACT

The paper presents an approach to reconstruct cylinder-individual
pressure of each combustion cycle by processing the instantaneous
fluctuations of the engine speed and the in-cylinder pressure of one
cylinder. A new pressure model with a feasible number of parame-
ters is combined with a model-based torque estimation in order to
reconstruct the pressure traces. The performance of the proposed
algorithm is demonstrated with measurement data acquired from a
vehicle with a four cylinder spark ignition (SI) engine.

1. INTRODUCTION

Advanced engine control systems require feedback about the com-
bustion process in order to reduce exhaust gas emissions and im-
prove fuel efficiency. The in-cylinder pressure provides adequate
information about the engine performance. It is directly related to
heat release, pollutant formation, gas exchange, and other impor-
tant items [1]. At the current stage, however, when considering
series production, measuring the pressure of each cylinder is still
prohibitive by a number of conflicts such as production costs and
engine dimensions. Thus, alternative methods to obtain cylinder
pressure are of interest.

The reconstruction of the cylinder pressure has been investi-
gated before. The proposed approaches are primarily based on
the analysis of the instantaneous fluctuations in the engine angular
velocity [2, 3]. Larsson et al. [4] investigated pressure estima-
tion using torque sensors. Structure-borne sound, measured with
accelerometers mounted on the surface of the engine block, can
also be used in this context [5]. Though all these approaches are
successful, most of them are limited with respect to accuracy and
regions of engine speed. In addition they often require a large
number of coefficients to be correctly adjusted. However, it is ob-
viously difficult to extract the pressure trace or properties only us-
ing indirect signals.

Therefore we try to reconstruct the feedback information from
the combustion chamber of each cylinder with desired accuracy by
using a reduced number of pressure sensors, at best only one, and
the already available engine speed signal. In [6, 7] the estimation
of mean indicated pressure (IMEP) of each cylinder based on the
proposed concept was presented. This contribution addresses the
problem of reconstructing the cylinder-individual pressure traces
by combined processing of the instantaneous fluctuations of the
engine speed and the pressure of only one cylinder, the so-called
key cylinder. In contrast to the methods mentioned before, the
key cylinder approach has significant advantages. The available

pressure signal provides new possibilities with respect to the signal
modelling as well as its calibration.

The paper is organized as follows. In section 2, the approx-
imation of the crankshaft torque is presented. A method for dif-
ferentiation based on polynomial fitting is used in this context.
The reconstruction of the in-cylinder pressure represents the prob-
lem of estimating multiple signals from a single source, the en-
gine torque. Considering the superposition of the pressure traces
and the relation between torque and pressure, direct inversion of
the system is not possible. In order to solve this problem, a new
parametric pressure model with a feasible number of parameters
is introduced in section 3. In the subsequent section, an algorithm
for pressure decomposition and offset compensation is described.
Following that, torque estimation is combined with the proposed
signal model to fit the parameters of the unknown pressure traces.
In section 6 the algorithm is applied to measurement data before
the paper concludes with section 7.

2. TORQUE ESTIMATION

Assuming a stiff crankshaft, the resulting torque of the crankshaft
τ can be described according to [3] by

τ = τind − τfric − τload = θ(ϕ)
dϕ̇

dϕ
ϕ̇ +

1

2

dθ(ϕ)

dϕ
ϕ̇2, (1)

where τind is the indicated torque, τfric the friction torque, τload

the load torque, θ(ϕ) the crank angle dependent inertia, ϕ the
crank angle, and ϕ̇ = dϕ

dt
. τind is caused by the in-cylinder pres-

sure p

τind(ϕ) =

z−1�
l=0

(pl(ϕ) − p0) h(ϕ − l
4π

z
) (2)

with h(ϕ) = A r

�
sin ϕ + λ sin ϕ cos ϕ−µ cos ϕ√

1−λ2 sin2 ϕ+2 λ µ sin ϕ−µ2

�
, where

p0 is the ambient pressure, z the number of cylinders, l the cylinder
index according to the firing order, A the piston area, r the crank
radius, λ the connecting rod ratio, and µ the axial offset ratio.

We generally define the alternating component [τ ]∼ of τ as

[τ(ϕ)]∼ = τ(ϕ) − τ . (3)

τ presents the mean value of τ for the current engine cycle. Con-
sidering the steady state engine, the sum of the mean components
of all acting torques is balanced.

τ ind − τfric − τ load = 0 (4)
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The load torque during one cycle is nearly constant. Thus, the
alternating component of the indicated torque can be expressed as

[τind(ϕ)]∼ = θ(ϕ)
dϕ̇

dϕ
ϕ̇ +

1

2

dθ(ϕ)

dϕ
ϕ̇2 + [τfric(ϕ)]∼. (5)

Methods for the compensation of deterministic disturbances, such
as friction and incremental errors of the toothed wheel, as well as
an approach for approximating τ ind, have been presented in [6, 7].
Hence, only the angular velocity ϕ̇ and its differential remain to be
estimated in order to obtain the engine torque.

Engine speed is measured indirectly using a flywheel gear with
60 teeth. It provides trigger pulses for sampling the clock signal.
Consequently the angle equidistant term t(ϕi) is measured with
angular resolution of 6◦. The time resolution depends on the clock
frequency. Considering that

ϕ̇ =
1
dt
dϕ

, (6)

we will estimate dt
dϕ

first and then calculate ϕ̇ according to (6).
The differentiation is implemented performing a linear least-

squares fit of a polynomial of degree N , within a moving data
window with an odd number of samples F . The method provides
an accurate estimation using a minimal number of data samples.
This is an important criterion with respect to the decoupling of
single combustions, especially in case of misfire. In the following,
the equivalent FIR-presentation of the procedure will be derived,
in order to obtain the frequency response and use it to determine
adequate values for N and F .

The polynomial is defined as a function of window indices x.
Note that x does not depend on the window position and always
has the same values: −L, ..., 0, ...L, with L = F−1

2
. Considering

the derivative at the sample n, we define the vectors
tn = (tn−L, tn−L+1, ..., tn+L−1, tn+L)′, a = (a0, ..., aN )′,
w = (wn−L, wn−L+1, ..., wn+L−1, wn+L)′, and

X =

�
������

1 (−L)1 · · · (−L)N−1 (−L)N

1 (−L + 1)1 · · · (−L + 1)N−1 (−L + 1)N

...
... · · ·

...
...

1 (L − 1)1 · · · (L − 1)N−1 (L − 1)N

1 (L)1 · · · (L)N−1 (L)N

�
������

so that
tn = X a + w (7)

where w is the vector of measurement noise. The least-squares fit
of the polynomial coefficients yields:

â = D tn (8)

with D = (X′ X)−1 X′. Since the m-th derivative of a polyno-
mial y(a, x), defined as

y(a, x) = a0 + a1 x + a2 x2 + a3 x3 + ... + aN xN , (9)

for x = 0 is
dm y(a, 0)

dxm
= m! am, (10)

only the coefficient a1 has to be computed for the first derivative.
Hence, according to (8) only the second row of the matrix D, in
the following denoted as vector D2, is required. Applying the first
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Fig. 1. Frequency response of the procedure including smoothing
and differentiation with the polynomial approach. Engine harmon-
ics present the frequency normalized to the engine speed.

row ofD smoothes the signal t and is also known as the Savitzky-
Golay method [8]. Thus, the differential at the sample n can be
estimated as

dt

dϕ

����
ϕ=ϕn

= D 2 tn =
L�

i=−L

D 2,i+L+1 tn+i. (11)

Note that D does not depend on the measured data and can con-
sequently be precomputed for given N and F . Expression (11)
amounts to the FIR-filtering of the data tn with filter coefficients
D2. The advantage of this representation is that the frequency re-
sponse of the procedure can be calculated (see examples in Fig. 1).
Additionally, using constant coefficients significantly reduces the
computational costs for an on-line algorithm.

Choosing N = 5, F = 11 for engine speeds lower than 4000
rpm, and N = 3, F = 13 for higher speeds, t(ϕi) is smoothed
first and then differentiated with sufficient accuracy. The differen-
tiation of ϕ̇ in (5) is approximated with the same approach, thus
the torque trace is completely estimated.

3. PRESSURE SIGNAL MODEL

When analyzing a large number of measured pressure traces at
the same operating point, some common characteristics can be ob-
served. In the angle region before ignition, normal combustion
as well as misfires show identical traces. The difference between
the pressure of a misfire and normal combustion usually shows the
same shape varying in the amplitude and angular position. These
stochastic variations are caused by differing charge compositions
and starting points of the combustion. The pressure rise for the
misfire case is caused by the compression.

Considering this observation, the pressure trace is decomposed
into two parts: one due to the compression, g(ϕ) and another one
due to the combustion, f(ϕ), as shown in figure 2. Hence the fol-
lowing pressure signal model for a single combustion is proposed

p(ϑ, ϕ) = g(ϕ) + α f(ϕ − δ) (12)

where ϑ = (α, δ). The component g(ϕ) represents the pressure
trace that would occur without ignition. It depends primarily on
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the manifold pressure and the operating conditions. Since these
are widely constant during one engine cycle, g(ϕ) can be assumed
to be identical for all cylinders in this period.

The shape of f(ϕ) depends on the operating point. An ad-
ditional advantage of the key cylinder approach in this context is
that a suitable trace can be determined adaptively using the avail-
able pressure signal.

Thus the basic idea is to obtain the current estimation of g(ϕ)
and f(ϕ), decomposing the key cylinder pressure of each combus-
tion. The estimation of ϑ will be carried out subsequently in the
torque domain.

4. PRESSURE DECOMPOSITION AND OFFSET
COMPENSATION

In the angular region before the start of combustion the compres-
sion curve g(ϕ) is identical to the complete pressure p(ϕ). Thus
only the remainder of the trace has to be approximated. Neglect-
ing the wall heat losses, the compression can be assumed as an
adiabatic process:

g(ϕ) V (ϕ)κ = C, (13)

where κ is the adiabatic exponent, C a constant and V (ϕ) the
stroke volume calculated from engine dimensions. Using this as-
sumption, the missing part of the curve can be extrapolated. There-
fore the unknown parameters κ and ln C have to be estimated. Ad-
ditionally, we have to consider that the piezoelectric sensors, usu-
ally used for measuring the pressure, register only the fluctuations
of the signal. Since the absolute value is not correct, the offset
error of the measured pressure pM (ϕ) has to be compensated.

p(ϕ) = pM (ϕ) + ∆p (14)

By means of (14) the model (13) for the region before ignition can
be expressed as

(pM (ϕ) + ∆p) V (ϕ)κ = pM (ϕ) (1 + ∆p/pM (ϕ)) V (ϕ)κ = C
(15)

or equivalently

ln pM (ϕ) + ln(1 + ∆p/pM (ϕ)) + κ ln V (ϕ) = ln C. (16)

Assuming the cylinder pressure at −180 to −175◦ to be equal to
the available manifold pressure, the offset error is limited to ±0.5
bar. Thus the data closely to the ignition fulfills |∆p/pM (ϕ)| �
1. Using the Taylor-approximation,

ln(1 + ∆p/pM (ϕ)) ≈ ∆p/pM (ϕ), (17)

we obtain

ln C − ∆p pM (ϕ)−1 − κ ln V (ϕ) ≈ ln pM (ϕ). (18)

The parameters κ, ln C and ∆p can be estimated using the least
squares method. Considering the measured pressure for n crank
angles ϕ1 < ϕ2... < ϕn < 0◦ before ignition, the model (18)
yields

ln C − ∆p pM (ϕi)
−1 − κ ln V (ϕi) ≈ ln pM (ϕi), (19)

with the measurement noise wi. We define the vectors
γ = (ln C, ∆p, κ)′, y = (ln pM (ϕ1), ..., ln pM (ϕn))′, and

Z =

�
��

1 −pM (ϕ1)
−1 − ln V (ϕ1)

...
...

...
1 −pM (ϕn)−1 − ln V (ϕn)

�
�� (20)
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Fig. 2. Pressure components: complete pressure p(ϕ), compres-
sion component g(ϕ), combustion componentf(ϕ)

so that the parameter vector γ can be obtained as follows:

γ̂ = (Z′ Z)−1 Z′ y. (21)

Thus the pressure decomposition is completed applying the esti-
mated parameters to (13, 14).

5. RECONSTRUCTION

In order to reconstruct the unknown pressures according to (12),
the terms g(ϕ) and f(ϕ) for each engine cycle are obtained by
decomposing the key cylinder pressure.

Consider now the task of estimating the unknown parameters
ϑ. To simplify the notation, a single engine cycle is regarded. As-
suming g(ϕ) as identical for all cylinders, the torque part due to
the compression τcomb can be calculated as

τcomb(ϕ) = τind(ϕ) −
z−1�
l=0

(gkc(ϕ − l
4π

z
) − p0) h(ϕ − l

4π

z
),

(22)
where gkc(ϕ) is the compression pressure of the key cylinder. Dur-
ing one cycle of the experimental four cylinder engine, three sets
of parameters have to be determined. Since the components f(ϕ)
of each cylinder are widely decoupled (see Fig.2), the trace of
τcomb(ϕ) can be divided into four windows, each containing a sig-
nature of only one combustion. We define

pcomb(ϑ, ϕ) = α f(ϕ − δ). (23)

Thus the parameter vectors can be estimated separately solving the
following nonlinear least-squares problem for each window

min
ϑ

k2�
i=k1

|τcomb(ϕi) − pcomb(ϑ, ϕi) h(ϕi)|2 , (24)

where k1 and k2 are the indices limiting the considered data win-
dow.
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Fig. 3. Reconstruction results using the torque computed from
measured pressure (a and b), and using engine speed (c and d),
4000 rpm and varying load, 1200 combustions.

6. EXPERIMENTAL RESULTS

The algorithm was applied to measurements obtained from a vehi-
cle with a 1.4 l four cylinder, direct injection SI-engine, at different
operating points. All cylinders were equipped with a pressure sen-
sor. One of them was assumed to be the key cylinder, and the
remaining ones provided the reference. The pressure signal was
sampled with a resolution of 1◦. Engine speed was measured us-
ing a toothed gear with increments of 6◦. The estimated torque
trace was interpolated to the same resolution as the pressure. The
performance of the proposed approach is demonstrated exemplar-
ily for one measurement. Figure 3 presents the results for 1200
combustions at a relatively high engine speed of 4000 rpm and
varying load.

Firstly, the pressure is reconstructed using the torque com-
puted from the measured pressure (a,b). This corresponds to the
reconstruction assuming that the torque trace is ideally estimated.
Results show that the proposed signal model performs well regard-
ing the considered system inversion.

Secondly, the reconstruction is performed using the torque es-
timated from engine velocity (c,d). The estimated positions of the
maxima are comparable to the first case. With respect to the am-
plitude of maxima, the reconstruction is slightly worse due to the
errors of torque estimation, but still very accurate. An example of
the traces is shown in figure 4. The accuracy of the method is obvi-
ously limited by the torque estimation. For extremely high engine
speeds, over 5000 rpm, the signal-to-noise ratio of velocity mea-
surements becomes poor, and corrupts the estimation significantly.

7. CONCLUSIONS

A parametric pressure model, based on processing the pressure of
one cylinder, is combined with torque estimation. Accurate feed-
back from the combustion chamber of each cylinder over a wide
region of operating points is obtained using only one pressure sen-
sor and the engine speed signal. Thus the proposed key cylinder
approach provides new opportunities for cost-efficient cylinder-
individual engine control and diagnostics. A promising possibility
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Fig. 4. Pressure reconstruction, an example of traces reconstructed
using engine speed.

to further improve the accuracy is to implement a more complex
engine model.
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