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ABSTRACT 
Next generation Phone and PDAs face stringent power and 
performance requirements. In order to take advantage of 
dynamic voltage and frequency management software 
driven adaptive power management methods are emerging 
as the key to performance and power scaling. This paper 
demonstrates an adaptive power management framework 
for Intel XScale™ Microarchitecture based platforms, 
which dynamically characterizes executing workloads 
based on system level events and adapts frequency and 
voltage in order to save power. In this paper we discuss 
the overall framework and analysis behind the optimal 
policy to adapt processor frequency and voltage. The 
paper also illustrated benefits of using this framework for 
MP3 playback, memory data transfer, phone idling etc. 
real life case studies.  

1. INTRODUCTION 
In the recent past, the frequency of operation for wireless 
application processors has been trending upward to 
accommodate higher performance demand. Higher 
frequency typically results in higher power. On top of that, 
these processors have been integrating various 
functionality on-chip leading to higher die-size and 
increased leakage. On the other hand, battery longevity 
constraint is increasing. Dynamic voltage and frequency 
management (Wireless Intel® SpeedStep Technology) is 
being deployed to meet the power and performance 
constraints. This paper introduces one such software 
framework based on Intel® XScale™ Microarchitecture 
technology. The paper is organized as follows: Section 2 
describes the hardware power management features. 
Section 3 gives high level overview of the software 
framework. Section 4 discusses in detail the analysis 
behind the policy manager. Sections 5 and 6 describe the 
experimental results and data analysis.  

2. H/W POWER MANAGEMENT SOLUTION 
To meet the power performance scaling challenges, system 
on-chip solutions for handheld devices such as, 
PXA27x[7], an Intel® XScale™ Microarchitecture based 
wireless application processor, deploys two key 
technologies:  

a) Dynamic voltage and frequency control: In this 
method, operating frequency of the core, interconnect, 
memory and other sub-system can be adjusted at run-time. 
Reducing frequency during inactive period saves power. 
Depending on the frequency of operation, the external 
voltage supply can be dynamically adjusted. Lowering 
voltage saves power even further.  
b) Power modes: The Intel® PXA27x processor family 
supports six power modes. The power modes are primarily 
differentiated by available functionality, total power 
consumption, and the amount of time to enter and exit a 
mode. As a function of workload and resource utilization, 
the device can transition between the power modes to 
minimize power consumption. The state transition diagram 
between the modes is shown in Fig. 1.   

Figure 1: State transition diagram between power modes 

Each of the six modes provides different levels of power 
consumption and resource availability in addition to 
variation in the transition time to the “Run” mode.  The 
details of the power modes are not furnished for the sake 
of brevity (details in [7]). HW solution assumes that, 
software (OS/Applications) are in charge of taking 
advantage of the above power features. During inactive 
period the system uses low power modes, such as sleep, 
standby, where as during active operation, the system 
resides in “Run” mode where the frequency and voltage 
are adjusted dynamically.  

3. SOFTWARE POWER MANAGEMENT 
SOLUTION 

In terms of taking advantage of the HW features, typically, 
operating system, application and users perspective are 
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limited to high level of abstraction and are not fine tuned 
to the HW platform. Hence, most of the software power 
management solutions developed thus far are tied to the 
Operating systems and utilize the information that the 
operating system provides [1][4][5][6]. They are 
inherently predictive methodologies based on task or 
scheduler information, which works well for compute 
intensive applications, since, they cannot distinguish 
between CPU or memory load, i.e. usage contribution of 
various system components. This paper proposes a generic 
software solution framework that uses a system-level 
approach and works closely with embedded operating 
system’s power management interface. A system level 
perspective allows the power-manager to understand the 
resource demand by the core and other system components 
(e.g. DMA, LCD, Video, Graphics Controller and Camera 
etc.) and fine tune the core, peripheral, memory and 
interconnect frequency individually. OS/application 
independent solution allows further policy adaptation 
based on the system usage. The proposed framework is 
composed of two basic components: (a) Profiler (b) Policy 
Manager. The profiler is responsible for probing the 
system, collecting the statistics and making them available 
to the policy manager. The policy manager uses that input 
and decides the system operating point (core freq., 
bus/mem frequencies and processor state). Fig. 2 below 
shows the overall framework.  
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Figure 2: Architecture of  IPM framework 

3.1 Profiler
The profiler collects 2 different types of statistics. One 
based on the OS idle thread that calculates %CPU 
utilization, and the other using the Processor PMU 
(Performance monitoring unit) that calculates the 
%memory utilization. At the end of each sampling window 
the statistic is delivered to the policy manager. Probing 
window size determines the speed of adaptation. 
Depending on the rate of change in the profile, the probing 
window can be adapted dynamically. It is important that 
this code is executed as close to the end of a window as 
possible to ensure timely statistics are generated.  For 

example, installing this code in an ISR meets this 
requirement (each OS has its own way of achieving this 
goal).  For calculating the %CPU utilization based on idle 
thread the algorithm is as below: 
(enter idle task) 

store the idle start time 
enter processor idle power mode 
store the idle stop time 
calculate and aggregate time spent in 
processor idle 

(exit idle task) 

PMU monitors various processor specific events (Detailed 
list can be found in [7]). For calculating the memory 
utilization statistic (% Memory utilization) at end of each 
window, we monitor the data cache misses and use that as 
an indication of system memory activity. 
% Memory Utilization = %Data Cache-misses rate - This 
metric is calculated by counting the PMU event for (Data 
Cache accesses) and (Data Cache Misses) 

access

miss
ratemiss D

DD =_
;

access

miss
ratemiss I

II =_

Similarly, communication fabric utilization, processor 
utilization and demand of other system components can be 
tracked. These system level events (which we capture via 
profiler) are stochastic processes, which can change in 
short term or long term (slow varying or rapid varying). 
The PMU counters mentioned earlier run concurrently to 
the execution of application and do not require any 
counting mechanism in software. This allows a clock-by-
clock accuracy of the events. The profiler can keep track 
of events at any level granularity (as programmed by the 
policy).  

4. POLICY DESCRIPTION
Most critical component of this framework is the policy 
manager. It uses the profiler information as its input. The 
output of the policy manger is the system operating point. 
We define the operating point as: OP = {PM(State/Mode), 
f(Freq), V(Voltage)}. Processor frequency and voltage are 
varied when the processor state is “Run”, when in any 
other lower-power state which is not “Run”, the frequency 
and voltage is usually fixed and not varied. Based on the 
system activity and profiles we can make 2 high-level 
distinctions between the overall policies:  
         (a)  Policy for low idling CPU – System Run Mode 
Most software applications/workloads can be generalized 
into two main categories: 

• CPU (compute) bound applications 
• Memory bound applications  

In order to achieve dynamic power/performance 
scalability, the user demand (performance) should be 
achieved at the lowest cost (power). Dynamic voltage and 
frequency scaling of the processor allows us to attain an 
optimal operating point. There have been several research 
papers in this area [2][3]. Memory latency and throughput 
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are dependent on the frequency of the memory bus or the 
system bus which is usually decoupled from the core 
frequency. Thus, memory and system bus frequency can 
be controlled for the memory-bound applications 
independent of the core frequency. For this Freq is a three 
tuple number f = {fc, fb, fm}, representing core, bus and 
memory frequency respectively. Typically any single 
application can go through a set of distinct phases, (e.g. 
internet explorer downloading, video decoding etc.). 
However, given complex application mixes, the phases 
may not be as distinct. We model the demand of system 
usage is an auto-regressive process. Where the demand for 
resource utilization at nth probing window, is a weighted 

sum of the same over last Nth window. ][ˆ nWR  as the 

prediction of demand or usage of a resource R at the nth

probing window.  
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Here γβα ,, are the proportional constants. For fb and fm

adaptation, demand for the other resources are also 
considered and hence the second summation over M 
number of resources. However, based on the Si 
constraints, these frequency changes may be done at 
discrete steps (i.e. as multiples of external oscillator 

frequency etc.). The coefficients for prediction ][iCR  , 

method of selection of γβα ,, and order of prediction N

is open to experimentation in the framework and also, 
varies with the probing window size. If the prediction is 
accurate, the window size is increased, otherwise, it is 
reduced. Thus, probing window length Tw is computed as 
follows:  

( ) ][][][ˆ]1[ nTnWnWnT WCCW +−=+ λ
For larger window size, the order of prediction can be 

reduced. Along with the window size ][iCR adaptation 

scheme can also be programmed in the framework. For the 
experiments presented in the paper, some simplified set up 
was used to the above algorithm for better study. The 

impact of window size on performance is under 
investigation. 

(b) Policy for high idling CPU –  System Idle Mode 
When the profilers report high idling activity, the device 
can be turned into low-power state for maximum power 
savings. The policy manager then queries the device input. 
If the devices time-out, the policy decides to enter 
processor low-power state. The events that are required for 
this policy decision to happen are the profiler input and the 
device time-out. The devices inputs are random events and 
do not necessarily follow the MA model. The device-
timeout events can arrive randomly, following a Poisson 
distribution. The wake-up events or events that bring the 
system out of this low-power state are events like key-
press, RTC wake-up etc. these also again are random and 
can follow Poisson distribution. Fig. 3 gives a very high-
level flow graph example of the policy. 
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Figure 3: Policy Flow graph 

5. EXPERIMENTAL SET UP 
After careful characterization of the various usage models, 
we decided to focus on multimedia workloads including 
MP3 and data movement operation to demonstrate the 
policy framework. PXA27x processor based on Intel® 
Development platform running Linux based Operating 
System was used as a test-bed. QVGA LCD display was 
enabled and refreshed at 60 fps. The workloads were 
downloaded as executables on the system and were 
running out of SDRAM. MP3 workload was playing audio 
at 44.1 KHz and 128 kbps. Data Transfer workload 
performed large amount of data/file copying between two 
locations in the external memory SDRAM. The video 
decoder was playing a 320x240 sized clip at about 256 
kbps. Multimedia workloads were based on the Intel IPP 
Performance Suite [8]. The profilers and the policy were 
running on the system during the operation of these 
workloads. The sampling power data was captured using 
National Instruments Data Acquisition. In all the cases the 
sampling was done for about 6 seconds while running the 
workloads. Power savings is measured based on the 
following definition:  
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The policy frame work was programmed at a fixed 
probing window and a 1st order of autoregressive 
prediction was used. 

6. RESULTS
All the results follow a similar color scheme. The black 
denote the power data without the profilers and the policy 
and the white denotes the power data with the policy and 
the profilers running. Fig. 4 shows the power acquisition 
profile for workload running MP3. The data is power 
captured on the processor core only not system-wide. The 
prediction model for the experiment assumes N=1 and

1=== γβα .

The results for MP3 show that due to the static window 
size there is slight delay between the start of MP3 
application and the change in the system operating point. 
Fig. 5 shows the power sampling data for the data transfer 
workload. The profiler detects that the workload is 
memory bound and policy manager makes a decision to 
reduce to power by lowering the core frequency but 
increases the memory bus frequency. That’s how the total 
power dissipation is reduced but the required performance 
is delivered. There is approximately 8% reduction in the 
memory copy throughput that is achieved. The table below 
gives the actual power savings percentages and 
corresponding performance degradation. 

Table 1:  Power Savings and performance impact  

Workload 
Savings with 
Policy 

Impact on 
Performance 

OEMIdle 60% Savings 0% 
MP3 47% Savings 0% 
Data Transfer 70% Savings ~8% 
MPEG4 Video 
Playback 

50% Savings 
0% fps 
degradation 

7. CONCLUSION 
This paper details the dynamic power and performance 
scaling framework that can be adopted. It is adaptable to 
any operating system. The policy can be modified and 
adjusted for a specific usage model. A single policy cannot 
cover all the various usage models that a PDA/phone can 
have. Further work is ongoing on analyzing the impact of 
higher order prediction on the overall policy impact. 
Characterization of adaptive probing window is also 
currently studied. 
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Figure 4:  Power Data for MP3 
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Figure 5:  Power Data for Memory Copy 
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