
SYSTEM LEVEL ADAPTIVE FRAMEWORK FOR POWER AND PERFORMANCE
SCALING ON INTEL® PXA27X PROCESSOR

Priya N. Vaidya, Moinul H. Khan, Bryan Morgan, Premanand Sakarda
{Priya.n.vaidya,Moinul.h.khan}@intel.com

Intel Corporation

ABSTRACT
Next generation Phone and PDAs face stringent power and
performance requirements. In order to take advantage of
dynamic voltage and frequency management software
driven adaptive power management methods are emerging
as the key to performance and power scaling. This paper
demonstrates an adaptive power management framework
for Intel XScale™ Microarchitecture based platforms,
which dynamically characterizes executing workloads
based on system level events and adapts frequency and
voltage in order to save power. In this paper we discuss
the overall framework and analysis behind the optimal
policy to adapt processor frequency and voltage. The
paper also illustrated benefits of using this framework for
MP3 playback, memory data transfer, phone idling etc.
real life case studies.

1. INTRODUCTION
In the recent past, the frequency of operation for wireless
application processors has been trending upward to
accommodate higher performance demand. Higher
frequency typically results in higher power. On top of that,
these processors have been integrating various
functionality on-chip leading to higher die-size and
increased leakage. On the other hand, battery longevity
constraint is increasing. Dynamic voltage and frequency
management (Wireless Intel® SpeedStep Technology) is
being deployed to meet the power and performance
constraints. This paper introduces one such software
framework based on Intel® XScale™ Microarchitecture
technology. The paper is organized as follows: Section 2
describes the hardware power management features.
Section 3 gives high level overview of the software
framework. Section 4 discusses in detail the analysis
behind the policy manager. Sections 5 and 6 describe the
experimental results and data analysis.

2. H/W POWER MANAGEMENT SOLUTION
To meet the power performance scaling challenges, system
on-chip solutions for handheld devices such as,
PXA27x[7], an Intel® XScale™ Microarchitecture based
wireless application processor, deploys two key
technologies:

a) Dynamic voltage and frequency control: In this
method, operating frequency of the core, interconnect,
memory and other sub-system can be adjusted at run-time.
Reducing frequency during inactive period saves power.
Depending on the frequency of operation, the external
voltage supply can be dynamically adjusted. Lowering
voltage saves power even further.
b) Power modes: The Intel® PXA27x processor family
supports six power modes. The power modes are primarily
differentiated by available functionality, total power
consumption, and the amount of time to enter and exit a
mode. As a function of workload and resource utilization,
the device can transition between the power modes to
minimize power consumption. The state transition diagram
between the modes is shown in Fig. 1.

Figure 1: State transition diagram between power modes

Each of the six modes provides different levels of power
consumption and resource availability in addition to
variation in the transition time to the “Run” mode. The
details of the power modes are not furnished for the sake
of brevity (details in [7]). HW solution assumes that,
software (OS/Applications) are in charge of taking
advantage of the above power features. During inactive
period the system uses low power modes, such as sleep,
standby, where as during active operation, the system
resides in “Run” mode where the frequency and voltage
are adjusted dynamically.

3. SOFTWARE POWER MANAGEMENT
SOLUTION

In terms of taking advantage of the HW features, typically,
operating system, application and users perspective are

V - 6570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

limited to high level of abstraction and are not fine tuned
to the HW platform. Hence, most of the software power
management solutions developed thus far are tied to the
Operating systems and utilize the information that the
operating system provides [1][4][5][6]. They are
inherently predictive methodologies based on task or
scheduler information, which works well for compute
intensive applications, since, they cannot distinguish
between CPU or memory load, i.e. usage contribution of
various system components. This paper proposes a generic
software solution framework that uses a system-level
approach and works closely with embedded operating
system’s power management interface. A system level
perspective allows the power-manager to understand the
resource demand by the core and other system components
(e.g. DMA, LCD, Video, Graphics Controller and Camera
etc.) and fine tune the core, peripheral, memory and
interconnect frequency individually. OS/application
independent solution allows further policy adaptation
based on the system usage. The proposed framework is
composed of two basic components: (a) Profiler (b) Policy
Manager. The profiler is responsible for probing the
system, collecting the statistics and making them available
to the policy manager. The policy manager uses that input
and decides the system operating point (core freq.,
bus/mem frequencies and processor state). Fig. 2 below
shows the overall framework.

Applications

Operating

System

OS Power

Management

Algorithm

HW Abstraction Layer / Drivers

HW with Dynamic Voltage and Frequency

Management
PMU

Performance / Idle

Profiler

Policy Manager

Figure 2: Architecture of IPM framework

3.1 Profiler
The profiler collects 2 different types of statistics. One
based on the OS idle thread that calculates %CPU
utilization, and the other using the Processor PMU
(Performance monitoring unit) that calculates the
%memory utilization. At the end of each sampling window
the statistic is delivered to the policy manager. Probing
window size determines the speed of adaptation.
Depending on the rate of change in the profile, the probing
window can be adapted dynamically. It is important that
this code is executed as close to the end of a window as
possible to ensure timely statistics are generated. For

example, installing this code in an ISR meets this
requirement (each OS has its own way of achieving this
goal). For calculating the %CPU utilization based on idle
thread the algorithm is as below:
(enter idle task)

store the idle start time
enter processor idle power mode
store the idle stop time
calculate and aggregate time spent in
processor idle

(exit idle task)

PMU monitors various processor specific events (Detailed
list can be found in [7]). For calculating the memory
utilization statistic (% Memory utilization) at end of each
window, we monitor the data cache misses and use that as
an indication of system memory activity.
% Memory Utilization = %Data Cache-misses rate - This
metric is calculated by counting the PMU event for (Data
Cache accesses) and (Data Cache Misses)

access

miss
ratemiss D

DD =_
;

access

miss
ratemiss I

II =_

Similarly, communication fabric utilization, processor
utilization and demand of other system components can be
tracked. These system level events (which we capture via
profiler) are stochastic processes, which can change in
short term or long term (slow varying or rapid varying).
The PMU counters mentioned earlier run concurrently to
the execution of application and do not require any
counting mechanism in software. This allows a clock-by-
clock accuracy of the events. The profiler can keep track
of events at any level granularity (as programmed by the
policy).

4. POLICY DESCRIPTION
Most critical component of this framework is the policy
manager. It uses the profiler information as its input. The
output of the policy manger is the system operating point.
We define the operating point as: OP = {PM(State/Mode),
f(Freq), V(Voltage)}. Processor frequency and voltage are
varied when the processor state is “Run”, when in any
other lower-power state which is not “Run”, the frequency
and voltage is usually fixed and not varied. Based on the
system activity and profiles we can make 2 high-level
distinctions between the overall policies:
 (a) Policy for low idling CPU – System Run Mode
Most software applications/workloads can be generalized
into two main categories:

• CPU (compute) bound applications
• Memory bound applications

In order to achieve dynamic power/performance
scalability, the user demand (performance) should be
achieved at the lowest cost (power). Dynamic voltage and
frequency scaling of the processor allows us to attain an
optimal operating point. There have been several research
papers in this area [2][3]. Memory latency and throughput

V - 658

➡ ➡

are dependent on the frequency of the memory bus or the
system bus which is usually decoupled from the core
frequency. Thus, memory and system bus frequency can
be controlled for the memory-bound applications
independent of the core frequency. For this Freq is a three
tuple number f = {fc, fb, fm}, representing core, bus and
memory frequency respectively. Typically any single
application can go through a set of distinct phases, (e.g.
internet explorer downloading, video decoding etc.).
However, given complex application mixes, the phases
may not be as distinct. We model the demand of system
usage is an auto-regressive process. Where the demand for
resource utilization at nth probing window, is a weighted

sum of the same over last Nth window.][ˆ nWR as the

prediction of demand or usage of a resource R at the nth

probing window.

�
=

−=
N

i
RRR inWicnW

1

][][][ˆ ; where][iWR is the observed

demand and][iCR is the coefficient of prediction. At the

end of each probing window based on the demand forecast
of the resource respective frequency is adjusted. The
frequency forecast is considered directly proportional to
the demand forecast. Thus, at each probing window the
adjustment to the frequency is done as follows

]1[],[],[][

]1[],[],[][

]1[][][][

1 1

1

1

−−−=∆

−−−=∆

−−−=∆

��

��

�

= =

= =

=

nfjinWjicnf

nfjinWjicnf

nfinWicnf

m

M

j

N

i
mmm

b

M

j

N

i
bbb

c

N

i
ccc

γ

β

α

Here γβα ,, are the proportional constants. For fb and fm

adaptation, demand for the other resources are also
considered and hence the second summation over M
number of resources. However, based on the Si
constraints, these frequency changes may be done at
discrete steps (i.e. as multiples of external oscillator

frequency etc.). The coefficients for prediction][iCR ,

method of selection of γβα ,, and order of prediction N

is open to experimentation in the framework and also,
varies with the probing window size. If the prediction is
accurate, the window size is increased, otherwise, it is
reduced. Thus, probing window length Tw is computed as
follows:

()][][][ˆ]1[nTnWnWnT WCCW +−=+ λ
For larger window size, the order of prediction can be

reduced. Along with the window size][iCR adaptation

scheme can also be programmed in the framework. For the
experiments presented in the paper, some simplified set up
was used to the above algorithm for better study. The

impact of window size on performance is under
investigation.

(b) Policy for high idling CPU – System Idle Mode
When the profilers report high idling activity, the device
can be turned into low-power state for maximum power
savings. The policy manager then queries the device input.
If the devices time-out, the policy decides to enter
processor low-power state. The events that are required for
this policy decision to happen are the profiler input and the
device time-out. The devices inputs are random events and
do not necessarily follow the MA model. The device-
timeout events can arrive randomly, following a Poisson
distribution. The wake-up events or events that bring the
system out of this low-power state are events like key-
press, RTC wake-up etc. these also again are random and
can follow Poisson distribution. Fig. 3 gives a very high-
level flow graph example of the policy.

Deafult
Freq. "Run"

Low-Power
State

Device-Timeout
&& High-Idle

CPU
Keypress | |

RTC W ake-up

Increase
Freq. and
Voltage

Decrease
Freq. and
Voltage

%CPU increases %CPU
decreases

Figure 3: Policy Flow graph

5. EXPERIMENTAL SET UP
After careful characterization of the various usage models,
we decided to focus on multimedia workloads including
MP3 and data movement operation to demonstrate the
policy framework. PXA27x processor based on Intel®
Development platform running Linux based Operating
System was used as a test-bed. QVGA LCD display was
enabled and refreshed at 60 fps. The workloads were
downloaded as executables on the system and were
running out of SDRAM. MP3 workload was playing audio
at 44.1 KHz and 128 kbps. Data Transfer workload
performed large amount of data/file copying between two
locations in the external memory SDRAM. The video
decoder was playing a 320x240 sized clip at about 256
kbps. Multimedia workloads were based on the Intel IPP
Performance Suite [8]. The profilers and the policy were
running on the system during the operation of these
workloads. The sampling power data was captured using
National Instruments Data Acquisition. In all the cases the
sampling was done for about 6 seconds while running the
workloads. Power savings is measured based on the
following definition:

V - 659

➡ ➡

()
%100⋅

−
=

RUN

PolicyRUN
Saving P

PP
P

The policy frame work was programmed at a fixed
probing window and a 1st order of autoregressive
prediction was used.

6. RESULTS
All the results follow a similar color scheme. The black
denote the power data without the profilers and the policy
and the white denotes the power data with the policy and
the profilers running. Fig. 4 shows the power acquisition
profile for workload running MP3. The data is power
captured on the processor core only not system-wide. The
prediction model for the experiment assumes N=1 and

1=== γβα .

The results for MP3 show that due to the static window
size there is slight delay between the start of MP3
application and the change in the system operating point.
Fig. 5 shows the power sampling data for the data transfer
workload. The profiler detects that the workload is
memory bound and policy manager makes a decision to
reduce to power by lowering the core frequency but
increases the memory bus frequency. That’s how the total
power dissipation is reduced but the required performance
is delivered. There is approximately 8% reduction in the
memory copy throughput that is achieved. The table below
gives the actual power savings percentages and
corresponding performance degradation.

Table 1: Power Savings and performance impact

Workload
Savings with
Policy

Impact on
Performance

OEMIdle 60% Savings 0%
MP3 47% Savings 0%
Data Transfer 70% Savings ~8%
MPEG4 Video
Playback

50% Savings
0% fps
degradation

7. CONCLUSION
This paper details the dynamic power and performance
scaling framework that can be adopted. It is adaptable to
any operating system. The policy can be modified and
adjusted for a specific usage model. A single policy cannot
cover all the various usage models that a PDA/phone can
have. Further work is ongoing on analyzing the impact of
higher order prediction on the overall policy impact.
Characterization of adaptive probing window is also
currently studied.

Workload - MP3

0

0.1

0.2

0.3

0.4

0.5

0.6

W

W ithPolicy

W ithoutPolicy

Figure 4: Power Data for MP3

Workload - Memcpy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W

WithPolicy

WithoutPolicy

Figure 5: Power Data for Memory Copy

8. REFERENCES
[1]Krisztian Flautner and Trevor Mudge,“Vertigo: Automatic
Performance Setting for Linux” Proceedings of the 5th

Symposium on Operating Systems Design and Implementation
2002.
[2] Matthew W. Alsleben and Jeanine Cook, “Toward Dynamic
Recognition of Workload Phases” 4th Annual Austin CAS
Conference, February 21, 2003
[3]J. Cook, R.L. Oliver, E. E. Johnson, “Examining Performance
Differences In Workload Phases”, Proceedings of the 4th IEEE
International Workshop on Workload Characterization, pages
82-90, December 2001
[4]Y. Shin, K. Choi, and T. Sakurai. “Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors.”
Proceedings of the International Conference on Computer-Aided
Design, pages 365--368, November 2000
[5]A. Manzak, C. Chakrabarti, "Variable Voltage Task
Scheduling for Minimizing Energy or Minimizing Power", IEEE
International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP'00), 2000, pp. 3239-3242.
[6]Oman S. Unsal, Israel Koren, “System- level Power Aware
Design techniques in Real-time Systems”, Proceedings of the
IEEE, Vol. 91, July 2003.
[7]Intel® PXA27x Application Processor Architecture
Reference Manual. http://www.intel.com
[8] Intel® Integrated Performance Primitives on Intel® Personal
Internet Client Architecture Processors Reference Manual.
http://www.intel.com

V - 660

➡ ➠

