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ABSTRACT 

Insect damaged wheat kernels (IDK) are characterized by 

a small hole bored into the kernel by insect larvae. This 

damage decreases flour quality as insect proteins interfere 

with the bread-making biochemistry and insect fragments 

are very unsightly. A prototype system was set up to detect 

IDK by dropping them onto a steel plate and processing 

the acoustic signal generated when kernels impact the 

plate. The acoustic signal was processed by three different 

methods: 1) modeling of the signal in the time domain, 2) 

computing time domain signal variances in short time 

windows, and 3), analysis of the frequency spectra 

magnitudes. Linear discriminant analysis was used to 

select a subset of features and perform classification.  98% 

of un-damaged kernels and 84.4% of IDK were correctly 

classified. 

1. INTRODUCTION 

Internal insect infestation of wheat kernels degrades 

quality and value of wheat and is one of the most difficult 

defects to detect. Insect infestation causes grain loss by 

consumption, contaminates the grain with excrement and 

fragments, causes nutritional losses, and degrades end-use 

quality of flour [1]. Wheat millers usually specify that 

wheat loads must contain less than five insect-damaged 

kernels (IDK) per 100 g. Inspecting for IDK’s is labor 

intensive and may miss most of the infested kernels where 

an immature insect has not emerged from the kernel.      

Wheat kernels become infested when an adult female 

insect chews a small hole into the kernel, about 0.05 mm 

in diameter, deposits an egg, and then seals the egg with a 

mixture of mucus and the wheat that was chewed out. The 

egg plug is the same color as the wheat surface so it is 

nearly impossible to detect by external examination.  

When the egg hatches, the insect larvae develop and 

consume tunnels inside the wheat kernel until it reaches 

maturity.  Finally, the insect exits the kernel by chewing an 

exit tunnel. 

Several methods have been used, or are currently 

under development, to detect insect damage inside whole 

wheat kernels [1]. These include staining the egg plug to 

detect weevil infestation, flotation methods, x-ray imaging, 

acoustic detection of larval movement and chewing, 

carbon dioxide measurement, and staining of amino acids 

specific to insect body fluids. However, most of these 

methods have only achieved limited implementation either 

because they are slow, labor intensive, expensive, can only 

detect specific insect species, or cannot quantitatively 

measure insect infestation levels.  More recently, an image 

analysis program has been developed to automatically 

scan x-ray images for insect infestation [2]. Other 

researchers have investigated use of near-infrared (NIR) 

spectroscopy to detect hidden insects in wheat kernels [3].  

Finally a digital signal processing method has been 

developed to work in conjunction with a Perten Single-

Kernel Characterization System (SKCS) to detect insect-

damaged kernels [4]. X-ray, NIR methods, and SKCS 

methods suffer from high false-positive error rates (good 

kernels classified as infested) and are still cost prohibitive 

for many commercial applications. Thus, no economically 

viable and simple equipment utilizing these technologies 

has yet become available for detection of internal insects.  

It is proposed that IDK can be discriminated from un-

damaged kernels by means of impact acoustic emissions. 

Since IDK are hollowed out from the insect tunnel, it 

stands to reason that their impact acoustic emissions would 

be different than un-damaged kernels. However, these 

methods are not readily adaptable to high speed 

inspection. A high-throughput, low cost acoustical system 

for sorting pistachio nuts has been developed to separate 

pistachio nuts with closed shells from those with cracked 

shells [5-7]. In this system, pistachio nuts drop onto a steel 

plate and the sound of the impact is analyzed in real time. 

Pistachio nuts with closed shells produce a different sound 

than those with cracked shells, as expected. Classification 

accuracy of this system is approximately 97%, with a 

throughput rate of approximately 40 nuts/second.  The 

cost of the system is approximately $5000 and it works 

reliably in a food processing environment with little 

maintenance or skill required to operate. Simple features 

such as amplitude of the sound, decaying rate of the sound 
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amplitude, etc. were used to reach a decision to accept or 

reject the nut. More recently, Cetin et al. (2003) [6,7] 

developed an improved classification scheme for use in 

this sorter.  This scheme utilized standard practices used in 

speech-recognition systems in which the sound feature 

vector consists of mel-cepstral coefficients along with 

principle components of magnitude of acoustic impact 

emission signals to identify closed- and open-shell nuts. 

The objective of this study is to develop signal 

processing algorithms to show feasibility for real-time 

inspection of wheat infested with stored grain insects. The 

overall aim of the project is to detect, classify and remove 

contaminated and defective kernels using impact acoustic, 

or the sound created when a kernel strikes a steel plate, as 

this mode of acoustic excitation is easily adapted to high 

throughput sorting systems. 

2. MATERIALS AND METHODS 

A common stored grain insect, the rice weevil, was reared 

in kernels from hard red winter wheat (HRW) wheat. A 

total of 500 kernels with no insect damage and 500 kernels 

with an emerged hole were picked out by visual inspection 

and used in experimental apparatus.

Experimental apparatus: A schematic of the 

experimental apparatus (Figure 1) for singulating wheat 

kernels, dropping them onto the impact plate, then 

collecting the acoustic emissions from the impact are 

shown in Figure 1. The vibration feeder consisted of a 

steel trough in the shape of a “V” which conveyed the 

kernels from the bulk hopper into a single file by the time 

they reached the end of the feeder.  The impact plate was a 

polished block of stainless steel approximately 7.5 x 5.0 x 

10 cm.  The mass of the impact plate is much larger than 

the wheat kernels in order to minimize vibrations from the 

plate interfering with acoustic emissions from kernels.  

Two microphones, which are sensitive to frequencies 

up to 100KHz are used in order to sense ultrasonic 

acoustic emissions from the wheat kernels.  It was found 

that there can be an order of magnitude difference in 

intensity of the acoustic emissions among kernels. Thus, 

one microphone was amplified at 314 mV/Pa and the other 

at 31.4 mV/Pa to ensure that the system has the required 

dynamic range to capture the acoustic emissions. 

Microphone signals are digitized at a sampling frequency 

of 192 KHz with 16 bit resolution.  The data acquisition 

was triggered using an optical sensor. Upon receipt of a 

trigger signal, the computer would acquire 2000 data 

points from the microphone signal.  After acquisition, the 

signal was first high pass filtered using a single pole 

recursive filter with a cutoff frequency of 9600 KHz.  This 

filtering effectively eliminated 60 Hz noise, any DC offset, 

and eliminated effects from ambient sounds.  

Figure 1. Schematic of experimental apparatus for 

collecting acoustic emissions from wheat kernels 

2.1 Data processing: Features from the two microphones 

were obtained by the same processing. Subsequently, 

classification was performed using linear discriminant 

analysis (LDA) using features from each microphone 

independently. Finally, a kernel was classified as IDK only 

if the LDA from both microphones indicated it was IDK. 

Features were extracted from the signals by three different 

methods: 1) modeling of the signal in the time domain, 2) 

computing time domain signal variances in short time 

windows, and 3) analysis of the frequency spectra 

magnitudes. Each of these methods will be discussed 

separately below. 

Typical signals from 

an un-damaged kernel and IDK are shown in Figure 2.  

The maximum amplitude of the signals is quite variable 

but the overall shape of signals emitted from IDK’s and 

un-damaged kernels is more consistent.  Damaged kernels 

have a strong tendency to resonate for a longer time than 

un-damaged kernels.  This phenomenon is due to the 

insect tunnel within the body of the kernel.  To 

characterize this type of signal response, we modeled the 

signal after transforming it in the following steps outlined 

below: (i) rectify the signal by taking the absolute value at 

all points, (ii) non-linearly filter the signal by replacing the 

center data point with the maximum value in a seven point 

window, and (iii) Non-linearly estimate the four 

parameters of the Weibull function, given by equation 1, 

which has a shape similar to that of the processed time 

domain signal. 

)1

      (1) 

where , otherwise 
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The parameters , ,  and  are parameters of the 

Weibull equation that are iteratively estimated by non-

linear regression dynamic link library (DLL) (NLREG 

Phil Sherod, Brentwood, TN),  is the magnitude of the 

Weibull function at data point .  The parameters  and 

determine the shape of the resulting curve while 

parameters  define the magnitude of the signal and 

determines where the Weibull curve begins.  Parameter 

controls the width of the curve while  controls its shape.  

When 3.5, the curve approximates a Gaussian, when 

2, the curve approximates a log-normal curve, and when 

1, the curve approximates an exponential decay. Thus, 

parameters  and  are potentially useful features for 

distinguishing IDK from un-damaged kernels irregardless 

of the signal magnitude.  Additionally, the mean-square 

error value  from the curve fitting can also aid in the 

identification of IDK.  Figure 3 shows an example of 

signals that have been processed as described above and 

Table 1 shows average parameter estimates for all kernels. 
good kernel, original signal
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Figure 2.  Typical signals from an un-damaged kernel 

(left) and IDK. Note that duration of the IDK is longer. 
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Figure 3.  Maximum value filtered signals fitted with a 

Weibull curve for an un-damaged kernel (left) and IDK 

(right). 

Table 1. Average Weibull parameter estimates. 

Un-damaged Insect damaged 

parameter avg std dev avg std dev 

15.01 8.06 27.99 19.37 

2.75 1.19 1.59 0.78 

0.85 0.17 0.80 0.13 

 In addition 

to the time domain processing by modeling the signals 

with a Weibull function, variances of the signals are also 

computed in short time windows. Weibull function 

captures the shape of the recorded signal globally and the 

short-time variance information models the local time 

domain variations in the signal. The short time windows 

were 50 points in duration and incremented in steps of 30 

points so that each window overlapped by 20 points. The 

first window began 40 points in front of the maximum 

signal magnitude. A total of eight short time windows 

were computed to cover the entire duration of all signals. 

After all variances were computed, they were normalized 

by the sum of all eight variances as follows 22821

                        (2) 

where 
2

and 
2

 are the normalized and computed 

variances from window  with  being the first window 

and  being the last.  This method captures the increased 

duration of the signals from insect damaged kernels.  As 

can be seen from Figure 4, the average normalized 

variance of the third window is greater than that from un-

damaged kernels.  Additionally, the slope between the 

third and fourth normalized variance is 

different.
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Figure 4.  Average normalized variances from short time 

windows of time domain signals. 

A 256 point discrete 

Fourier Transform (DFT) was computed from each signal 

using a Hamming window.  The 256-point window covers 

the impact sound of the wheat kernel and it starts about 80 

data points before the signal maximum slope which 

corresponds to the impact moment of the kernel.  The 

magnitude of each spectra was computed and then low 

pass filtered using a 20 tap FIR filter was applied to 

remove jagged spikes in the spectra.  The low pass filter 

has a cutoff frequency of /4 in the normalized DFT 

domain.  As can be seen in Figure 7, the frequency spectra 

of insect damaged kernels have a sharper peak that occurs 

at a lower frequency than the un-damaged kernel. Higher 

resolution DFT’s show that IDK have two peaks, however, 

this feature is often lost in noise.  In this example, peaks of 

the spectra of un-damaged kernels and IDK are clearly 

distinguishable but there are significant overlaps in many 

cases which are mainly due to the tumbling of the wheat 

kernel on the metal plate.  The frequency corresponding to 

the peak magnitude in the frequency spectra was saved as 

a potential discriminating feature.   In addition, the 15 

magnitude values before the peak and 15 points after the 
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peak were saved and normalized by the peak magnitude. 

For undamaged kernels, the average frequency 

corresponding to the peak DFT magnitude was 34.5 KHz 

with a standard deviation of 9.1 KHz.  In contrast, IDK’s 

had an average peak frequency of 26.3 KHz with a standard 

deviation of 9.6 KHz.
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Figure 5.  Example frequency spectra magnitudes for an un-

damaged and insect damaged kernel.   

3. CLASSIFICATION AND RESULTS 

The Weibull curve fit parameters ,  and , all eight 

normalized variances from the short time windows, the 

frequency corresponding to the peak DFT magnitude, and 

the 15 normalized DFT magnitudes before and after the 

peak DFT magnitude were pooled together as potential 

discriminating features.  Stepwise discriminant analysis 

(significance for entry and exit = 0.01) was used to select a 

small subset of these features for classification by 

discriminant analysis. The data sets were evenly divided 

into two randomly selected training and validation sets.  

Feature selection with stepwise discriminant analysis [8] 

followed by discriminant function computation was 

performed on the training sets, and then tested on the 

validation sets.  Both pooled and non-pooled covariance 

matrices were tested. This feature selection and 

classification procedure was performed independently for 

each microphone signal.  Finally, a kernel was classified as 

IDK only if the classification from both microphones 

indicated that it was IDK, otherwise the kernel was 

classified as good. 

Using the above method, 98.0% of the un-damaged 

kernels and 84.4% of IDK were correctly classified.  All 

types of features were selected: Weibull ,  and , short 

time window variances, frequency corresponding to the 

maximum DFT magnitude, and normalized DFT 

magnitudes about the peak magnitude. The stepwise 

feature selection procedure indicated that the Weibull 

parameters were the most significant for classification.  

Table 2 shows the classification accuracies when this 

method (stepwise selection, LDA, and OR logic on the 

two microphones) was applied to only a portion of the 

features extracted from the signal. 

Table 2.  Classification accuracies for subsets of features. 

Percent accuracy 
Features 

Undamaged IDK

Weibull ,  and  88.8 86.6 

Short time window variances 85.2 76.2 

DFT domain info. 87.4 85.0 

All features 98.0 84.4 

4. CONCLUSIONS AND FUTURE WORK 

This work shows that use of impact acoustic emissions for 

detection of IDK is a feasible and promising method. It is 

experimentally observed that more accurate classification 

results than manual inspection can be achieved by impact 

acoustical analysis in the data set. The computational cost 

of classifying a kernel is very low and as a result, it is 

possible to inspect large quantities of wheat kernels using 

the proposed technique.  Using the algorithm presented 

here, the signal processing only required 20 ms to perform 

with the Weibull curve fitting taking about half this time. 

Further experimentation and development is needed to 

expand this method using a wider range of wheat types 

grown under different climatic conditions.  Additionally, 

data from other types of wheat defects (i.e. mold damage, 

cracks, etc) will be needed to determine if the presence of 

other defects can be discriminated from un-damaged 

kernels and IDK.  Quite likely, further signal processing 

and a neural network will be needed to obtain high 

classification accuracies on more varied data. 
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