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ABSTRACT

In studies of the dynamics of renal vascular response to
blood pressure variations, measurements of pressure and
flow rate are typically utilized to characterize a dynamic re-
sponse with pressure as input and flow as output. However,
the primary regulatory effect is the adjustment of vascular
resistance, so that a record of a resistance time series would
better serve as the regulated output. Toward this goal, a
technique is developed for estimating the parameters of a
three-element, time-varying Windkessel model of the renal
vasculature that enables resistance estimation. The method
is described, analyzed, and applied to renal pressure/flow
data from rats.

1. INTRODUCTION

Variations in renal blood pressure elicit a dynamic response
in the renal vasculature in order to regulate kidney func-
tion, to prevent transmission of blood pressure to the mi-
crovasculature, or both. Characterizing this autoregulatory
response is important in studies of the progression of kid-
ney disease [1]. Experiments to study the autoregulatory
response in rats have been conducted using measurements
of blood pressure (BP) and renal blood flow (RBF), with
the dynamic relationship between pressure as the input and
blood flow rate as the output used for such characteriza-
tion [2, 3]. However, the primary dynamic response is in
renal vascular resistance (RVR) changes, rather than in flow
rate changes, so that study of the pressure/resistance dynam-
ics would be more revealing of the characteristics of the au-
toregulation.

Several researchers have used simple techniques to es-
timate the RVR from measured BP and RBF [4, 5, 6]. The
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general concept behind these estimators is to use the ratio
of smoothed BP and RBF recordings as the resistance es-
timate. We propose in this paper to improve the quality of
resistance estimates by accounting for the effects of vascular
compliance. To achieve this goal we identify the parameters
of a three-element, time-varying Windkessel model for the
renal vasculature, depicted in Fig. 1, using measurements
of the pressure and flow rate. We utilize the model in the
analysis of measured pressure and flow signals from con-
scious rats, as described in [2], and show that the model that
is obtained provides a more accurate estimate of flow than
does the simple estimate of resistance via ratios of smoothed
pressures and flows.

2. TIME-VARYING WINDKESSEL MODEL

The three-element time-varying Windkessel model shown
in Fig. 1 reflects different physiological quantities inside
the kidney. Roughly speaking, R1(t) reflects an aggregate
“preglomerular resistance,” R2 in the model reflects the re-
sistance of an aggregate “postglomerular resistance,” and C
simulates the vascular compliance. The vascular resistance
is measured in units of millimeters mercury per milliliters
per second (mmHg ·s ·mL−1), and the vascular compliance
is measured in units of milliliters per millimeters mercury
(mL · mmHg−1). P (t) is the blood pressure at the renal
artery and has the units of millimeters mercury (mmHg).
Q(t) is the blood flow in the renal artery and has the units
of milliliters per second (mL·s−1). Autoregulation is known
to be effected primarily through changes in afferent arteri-
olar diameter. The afferent arterioles form part of the pre-
glomerular resistance; hence, R1(t) is considered to vary in
time. R2 remains constant in the model, as the postglomeru-
lar resistance does not vary with autoregulation. Fluctua-
tions in R2 from other causes are assumed to be minimal in
the time frames that are studied in this paper.
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Fig. 1. Three-element time-varying Windkessel model of
the kidney.

3. PARAMETERS ESTIMATION OF THE MODEL

The identification of the model’s parameters is approached
using a least squares technique based on an iterative min-
imization of the one-step-ahead flow prediction error. The
model of Fig. 1 can be described by the state-space descrip-
tion

dPc(t)
dt

= −a(t)Pc(t) + bP (t)

Q(t) = − 1
R2

Pc(t) +
1

R2
P (t)

where

a(t) =
1
C

(
1

R1(t)
+

1
R2

); b =
1

R2C
.

These equations are discretized and the exponential terms
that arise from the discretization process are then approxi-
mated by their first order polynomial expansion as described
in [7]. The accuracy of this approximation depends on the
exponent value a[k]T , where T is the sample time. As the
exponent gets smaller, the first order polynomial approxi-
mation will be more accurate. The result is the equation

Q[k+1] = (1− a[k]T )Q[k] +
P [k+1]

R2
− 1 − a[k]T + bT

R2
P [k]

(1)
that enables a one-step-ahead prediction of the flow via

Q̂[k+1] = (1− â[k]T )Q[k]+
P [k+1]

R̂2

− 1 − â[k]T + b̂T

R̂2

P [k].

(2)
Note that the coefficients of the prediction equation depend
in a nonlinear way on the physical parameters C, R2 and

R1[k]. To estimate these parameters, we minimize

J =
N−1∑

k=0

|e[k + 1]|2 =
N−1∑

k=0

|Q[k + 1] − Q̂[k + 1]|2. (3)

First, an initial value for the total resistance is estimated
as the ratio of smoothed BP and RBF recordings as de-
scribed in [4, 5, 6]. This represents R1[k] + R2. Then
an initial value for R2 is subtracted from the total resistance
(usually 40% of the average total resistance). The result of
the subtraction will be used as an initial value for R1[k].
With these initial values, C is chosen to minimize J in (3).
Then with the estimated C and the initial value of R1[k],
R2 is updated such that J in (3) is minimized. Now with C
and R2 at these estimated values, R1[k] is estimated as de-
scribed in section 3.3. The function R1[k] is then smoothed
to reflect the bandlimited nature of the underlying resistance
changes using knowledge of the maximal rate of vascular
diameter change. This process is iterated until convergence
of the R1[k], R2, and C estimates is observed. Though con-
vergence is not guaranteed, the algorithm was observed to
converge if proper initial conditions for the parameters are
used.

3.1. Estimating C

To determine Ĉ for a given R1[k] and R2, we minimize J
in (3). Defining

α1[k] = Q[k + 1] − Q[k] − P [k + 1]
R2

+
P [k]
R2

,

β1[k] =
T

R1[k]R2
P [k] − T (

1
R1[k]

+
1

R2
)Q[k],

Ĉ can be expressed explicitly as

Ĉ =
∑N−2

k=0 β2
1 [k]

∑N−2
k=0 α1[k]β1[k]

. (4)

3.2. Estimating R2

J in (3) is minimized by choice of R̂2 for a given R1[k] and
C. With

α2[k] = Q[k + 1] + (
T

CR1[k]
− 1)Q[k],

β2[k] = P [k + 1] + (
T

CR1[k]
− 1)P [k] − T

C
Q[k],

the minimizing R̂2 can be expressed explicitly as

R̂2 =
∑N−2

k=0 β2
2 [k]

∑N−2
k=0 α2[k]β2[k]

. (5)
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Fig. 2. Iterations of C and R2 (top plot) and sample of R1[k]
for both Windkessel and Resistive models.

3.3. Estimating R1[k]

In the third step we determine R̂1[k] for a given R2 and C.
We minimize |e[k + 1]|2 = |Q[k + 1]− Q̂[k + 1]|2 for each
k. Defining

α3[k] = Q[k+1] + (
T

CR2
−1)Q[k] − P [k+1]

R2
+

P [k]
R2

,

β3[k] =
T

CR2
P [k] − T

C
Q[k],

the minimizing value of R̂1[k] can be expressed explicitly
as

R̂1[k] =
β3[k]
α3[k]

, k = 0, 1, ....., N − 2. (6)

Finally, the sequence R̂1[k] is smoothed using a simple
moving average smoother. To reduce the effect of noise,
the estimator for R̂1[k] (6) is slightly modified. We will
consider the estimated resistance at each time point as being
the actual resistance for some period of time that extends
before and after that point. Then for the same α3[k] and
β3[k], the estimated R1[k] will be

R̂1[n] =
∑n+w

k=n−w β2
3 [k]

∑n+w
k=n−w α3[k]β3[k]

, (7)

for n = w,w + 1, ......., N − w. 2w + 1 is the window
length. Simulation results showed that using the modified
estimator for R1[k] (7) tends to improve the performance of
the estimator in the noisy environment and tends to enhance
the convergence.

Table 1. NMSE of the estimated resistance and flow.

Windkessel Resistive
model (dB) model (dB)

SNR NMSE-R -42.25 -32.37
80dB NMSE-Q -61.19 -17.54
SNR NMSE-R -34.63 -31.96
30dB NMSE-Q -27.67 -17.35
SNR NMSE-R -22.68 -21.93
10dB NMSE-Q -10.35 -9.91

4. RESULTS

The performance of the time-varying Windkessel model and
the algorithm proposed to calculate the circuit parameters
are evaluated using both simulation results and renal pres-
sure/flow data from rats.

4.1. Simulation Results

The performance of the proposed model was tested using
fictional pressure and flow data that were generated by the
model. Pressure was generated by low pass filtering a white
Gaussian random sequence of mean 100mmHg using a sim-
ple moving average filter. We set C = 0.012, R2 =6, let
R1[k] be a low pass filtered sequence of a uniform ran-
dom process in the range [6, 10], and generate Q[k] via (1).
These values are similar to those observed in actual renal
data. To test the performance of the proposed algorithm in
the noisy environment, a zero mean white Gaussian noise
was added to the flow at three different signal to noise ratios
(SNR). Table 1 shows the average normalized mean square
error (NMSE) of the estimated resistance and flow over an
ensemble of 50 trials. Our proposed model out performs the
resistive model both for resistance as well as flow. Figure 2
shows iterations of estimated C and R2 for one case and a
representative one second segment of the final R1[k].

4.2. Renal Application

The circuit parameters of the proposed model are estimated
for five data sets of BP/RBF recordings of 30 minutes in
duration collected from normal Sprague Dawley rats as de-
scribed in [2]. The data is initially sampled at 200 Hz, then
resampled to 20 Hz before being used to estimate the pa-
rameters of the model. The estimated parameters are shown
in Table 2. The last column is the mean value of the esti-
mated time-varying R1[k] sequence. On average, the mean
value of the preglomerular resistance is about 51% of the to-
tal mean resistance. A plot of the estimated preglomerular
resistance for the first data set is shown in Fig. 3.

V - 643

➡ ➡



Table 2. Estimated parameters for five renal data sets from
normal Sprague Dawley rats.

average

Data Set Ĉ R̂2 R̂1[k]
1 0.0096 8.63 9.20
2 0.0128 6.54 5.12
3 0.0127 7.76 11.93
4 0.0154 6.72 6.58
5 0.0096 7.75 11.52

Table 3. NMSE of the predicted flow for the time-varying
Windkessel model and the resistive model.

NMSE: NMSE:

Data Set Windkessel model resistive model
1 -28.53 dB -13.92 dB
2 -22.71 dB -14.48 dB
3 -21.24 dB -10.55 dB
4 -18.39 dB -14.44 dB
5 -26.70 dB -11.82 dB

The prediction error of the time-varying Windkessel mo-
del is compared with the prediction error of the time-varying
resistive model. Both pressure and flow were smoothed us-
ing a zero phase moving average filter with a sliding win-
dow of one second length, similar to the method applied
in [4, 5, 6]. The Normalized Mean Square Error (NMSE) of
the estimated flow for both models is presented in Table 3.
The flow prediction error of the time-varying Windkessel
model is 4− 15 dB less than that for the time-varying resis-
tive model. This indicates that the presence of the compli-
ance has a significant value in fitting the data.

5. CONCLUSION

In this study, we have addressed resistance estimation in re-
nal hemodynamics. A 3-element time varying Windkessel
model was proposed with parameters reflecting in some sense
some actual physiological parameters in the kidney. The
time varying resistance in the proposed model is estimated
from pressure/flow data while taking into account the pres-
ence of the compliance. Including the compliance improves
the resistance estimation in comparison to currently em-
ployed methods based on a pure time-varying resistance.

Results showed that the flow prediction error of the pro-
posed three-element time-varying Windkessel model is 4 −
15 dB less than that for the time-varying resistive model.
This improvement was due to a better fitting of the flow at
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Fig. 3. Estimated preglomerular resistance for first data set.

the heart beat frequency. This suggests that the compliance
of the vessels’ walls should not be under estimated, and it
should be accounted for in any model that tries to under-
stand the pressure/flow dynamics at frequencies that include
the heart beats.
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