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ABSTRACT

A new approach for the computation of probability distributions
for coupled first order chemical reactions is introduced. The ap-
proach is based on system theory, where the system states are
chemical species and the signals are probabilities. We derive the
transfer functions of the so defined systems and show that they can
be applied to various reaction environments. The use of block di-
agrams offers a clear, visual, and convenient way to decompose
a complicated reaction system into simpler sub-systems and vice
versa. Since the state of the system is defined as a molecule species
instead of molecule population, with this method one can study
chemical reactions involving any number of molecules.

1. INTRODUCTION

In the last 50 years there have been some very important discov-
eries in the field of biology. The Genome Project and advances in
experimental techniques will lead to full knowledge of DNA se-
quences, identification of most genes, and temporal gene expres-
sion patterns for many organisms. Complete understanding of how
groupings of genes and related protein reactions interact to orches-
trate cellular functions is very important and possible. These inter-
actions are often formulated by coupled chemical reactions. As an
example, ribosomal translation of mRNA, the process of ribosome
moving along mRNA and translating the mRNA into protein, can
be modeled as the following first order reaction chain:

Ribosome · mRNA0
k0−→ Ribosome · mRNA1

k1−→ . . .

ki−1−−−→ Ribosome · mRNAi
ki−→ . . .

kMAX−1−−−−−−→ Ribosome · mRNAMAX

kMAX−−−−→ Ribosomefree + mRNAfree + protein

(1)

Chemical reactions are traditionally studied through the deter-
ministic approach, which assumes that the number of molecules
involved in reactions is large, and that the time evolution of the
molecule population is deterministic. However, the number of
molecules in biological systems can be very small [1, 2]. As an
example, it has been estimated that there are about 450 proteins,
30 ribosomes, 340 tRNA molecules, some mRNA molecules, and
30, 000 small organic molecules (e.g. amino acids, sugar, nu-
cleotides, ATP, NAD and others). Many studies have shown that
biological processes are actually stochastic [3, 4, 5]. Therefore, in

small biological systems, it is often more appropriate to model the
chemical reactions in a stochastic way.

There are mainly two approaches for the stochastic study of
the number of molecules in biochemical reactions: the first is based
on the analysis of the master equation [6], and the second relies on
Monte Carlo simulation methods [7]. In this paper, we consider
the first approach.

The objectives here are (i) to introduce a system with probabil-
ity signals, present a theory of represention of first order reaction
networks with system block diagrams and derive solutions from
them, (ii) to study the distribution of molecule populations in the
presence of multiple sources.

The structure of the paper is as follows. In Section 2 we intro-
duce the elementary system functions. Rules are given for trans-
lation of chemical equations into block diagrams. In Section 3,
the process of solving probability distribution functions through
block diagrams is presented. Subsequently, the case of combining
multiple sources is discussed. Finally, in Section 4 we give some
concluding remarks.

2. REPRESENTATION OF CHEMICAL REACTIONS BY
SYSTEM BLOCK DIAGRAMS

In this section we introduce the representation of first order chem-
ical reactions by system block diagrams. The state of the system is
the chemical species involved in the observed chemical reactions.
The signal of the system is the probability that a single molecule
is in state Si at time t. This probability is denoted by p(i)(t),
and such systems are referred to as probability systems. First, we
define the elementary system, and later we use it as a foundation
for building more complicated systems. We then discuss a special
form of the elementary system function. Additional reactions can
be incorporated in the studied biochemical reaction by using rules
for expanding system block diagrams.

2.1. Elementary system function

We give the definition of an elementary system as follows:

Definition 1. An elementary system is defined by the state of inter-
est, a parent state (a previous state), the probability rate constant
for a molecule to transfer from the parent state to the state of in-
terest, and the probability rate constant for a molecule to leave the
state of interest.
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For a first order reaction µ, the specific probability rate con-
stant cµ is such that

cµ∆t ≡ the probability per molecule for the first order

reaction µ to occur in the very small time interval

∆t.

Now, consider a single molecule in a first order reaction chain

· · ·Si−1
ci−1−−−→ Si

ci−→ · · · (2)

and suppose that we are interested in the state Si. Then, the ele-
mentary system is composed of the state Si, its parent state Si−1,

the incoming arrow
ci−1−−−→, and the outgoing arrow

ci−→.
Let the probability of an observed molecule in state Si at time

t by denoted by p(i)(t), i.e.,

p(i)(t) ≡ the probability that an observed molecule is in
state Si at time t.

Following the definition of the specific rate constant c, for a single
molecule, it can be derived that

p(i)(t + ∆t) = ci−1∆tp(i−1)(t) + (1 − ci∆t)p(i)(t).

The rearrangement of this expression with ∆t → 0, yields a differ-
ential equation. By applying the unilateral Laplace transformation,
we obtain

p(i)(s) =
ci−1

ci + s
p(i−1)(s) +

1

s + ci
p(i)(t = 0). (3)

where s is a complex variable used in the definition of the Laplace
transform. We assume throughout the rest of this paper that the
probability for the molecule to be in any state at time zero is zero,
that is, p(i)(t = 0) = 0. For a species that has molecules at time
zero, a source is attached to the corresponding state in the block
diagram. This is discussed in more detail in Section 2.2. Then (3)
becomes

p(i)(s) =
ci−1

ci + s
p(i−1)(s) . (4)

The factor ci−1
ci+s

in (4) is the transfer function of the elementary
system. The block representing the system connects the states
Si−1 and Si, and is illustrated in Figure 1. The input of the sys-
tem is the probability that a molecule is in state Si−1 at time t.
The output is the probability that a molecule is in state Si, also at
time t. From (4), it is easy to see that the probability system is ho-
mogeneous, i.e., the output of the system scales linearly with the
input.

In summary, the impulse response and the transfer function of
the elementary system in (2) are

h(t) = ci−1e
−cit , H(s) =

ci−1

s + ci
. (5)

2.2. A special form of the elementary system function

A special form of the elementary system function is the transfer
function for the system connected to a source. The source reflects
the probability that the observed molecule is introduced to a certain
state from the exterior. For example, if S

(in)
i is a source connected

to state Si, then we denote it according to

S
(in)
i ⇒ Si

ci−→ · · · (6)

Fig. 1. The system block diagram of reaction (2). The block rep-
resents the transfer function of the elementary system. It connects
the state Si−1 and state Si. The input of this block is the proba-
bility as a function of time t that a molecule is in state Si−1. The
output is the probability as a function of t that a molecule is in
state Si.

The detailed balance yields

p(i)(t + ∆t) = p(i)(t)(1 − ci∆t) + p(i,in)(t)

= p(i)(t)(1 − ci∆t) + f (i)(t)∆t

where p(i,in)(t) is the probability that a molecule from the source
is injected into state Si in the interval [t , t + ∆t], and f(i)(t) is
the source’s probability density function of injection into state Si.
Therefore,

p(i)(s) =
f (i)(s)

s + ci
.

The impulse response and the transfer function of the system which
connects the source to state Si is

h(t) = e−cit , H(s) =
1

s + ci
.

Note that the input signal of this system is the probability density
function of injection.

For a system where the source injects the observed molecule
into state Si at time t = 0, the source’s probability density function
is δ(t) whose unilateral Laplace transform is 1. For open systems,
possible source functions are ae−a(t−τ), aδ(t−τ1)+(1−a)δ(t−
τ2), and

∑∞
n=0

λne−λ

n!
δ(t − nτ ).

2.3. Expansion of an existing system block diagram

When new reactions are included to a reaction network, the system
block diagram can be modified using the following rules:

2.3.1. Addition of a parent

Consider the reaction network

· · ·Si−1
ci−1−−−→ Si

ci−→ · · ·
↑ cj

Sj

...

(7)

This can be seen as adding another parent to the state Si of the
reaction chain (2). The modified block diagram of Figure 1 is
plotted in Figure 2. Note that p(i−1)(t) is the probability for a
molecule to be in state Si−1 and p(j)(t) is the probability for the
same molecule to be in state Sj . The probability for this molecule
to be in state Si is the sum of the two outputs. This rule reflects
the additivity of the probability system.
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Fig. 2. The system block diagram for reaction network (7). This
can be achieved by adding another parent to state Si of the block
diagram in Figure 1.

2.3.2. Addition of a child

In the following reaction network

· · ·Si−1
ci−1−−−→ Si

c
(1)
i−−→ · · ·

↓ c
(2)
i

...

(8)

the species Si has two children. As a result, the modified transfer
function has one more term c

(2)
i in its denominator compared to

that of (2), since there is one more outgoing edge with parameter
c
(2)
i . The modified block diagram is shown in Figure 3.

Fig. 3. The system block diagram for reaction network (8). Com-
pared to Figure 1, the transfer function of this system has one more
term c

(2)
i in its denominator.

Example 1:
The system block diagram for the coupled first order reactions (1)
is shown in Figure 4, with Ribosome · mRNAi (i = 0, . . . ) de-
noted as Si, Ribosome·mRNAMAX as SN−1 and Ribosomefree

as SN . The possible source is S0.

Fig. 4. Block diagram for the first order reaction network (1).

3. FROM SYSTEM BLOCK DIAGRAM TO THE
SOLUTION

3.1. From system block diagram to the solution of p(i)(t)

In Section 2, we discussed that the probability system has the prop-
erties of homogeneity and additivity. Therefore, the probability
system is a linear system and the properties of linear systems can
be applied.

Example 2:
Assume that ci �= cj when i �= j (i = 1, . . . , N and j =
1, . . . , N ), and that the input probability distribution of state S1

is f (1)(t) = δ(t). Then, using system theory, the block diagram
in Figure 4 leads to the state probabilities for one molecule

p(i)(t) =

⎧⎪⎨
⎪⎩

1
ci

∑i
j=1 M

(1,i)
j cje

−cjt , ci > 0

1 − ∑i−1
j=1 M

(1,i−1)
j e−cjt , ci = 0 , i ≥ 2

1 , ci = 0 , i = 1

,

where

M (k,m)
p =

{ ∏m
j=k,j �=p

cj

cj−cp
, m > k

1 , m = k
.

Note that if there are cis equal to cjs, a closed form solution is also
possible.

3.2. From p(i)(t) to the probability distribution of the molecule
population

Suppose there are x0 molecules of species A injected into the sys-
tem from source A(in) with the same probability density f(t), and
no molecules of other species. Denote the number of molecules
at state Si by N(i) and let K

(i)
j = 1 if molecule j is at state Si

and K
(i)
j = 0 if it is not. Thus N (i) =

∑
j K

(i)
j . Note that

K
(i)
1 , K

(i)
2 , · · · , K

(i)
x0 are independent Bernoulli random variables

with the same probability p(i)(t). Therefore, Ni has a binomial
distribution. The probability that there are n molecules in state Si

at time t is

P (i)
n (t) =

(
x0

n

)(
p
(i)
A (t)

)n(
1 − p

(i)
A (t)

)x0−n
(9)

with mean µi(t) and variance σ2
i (t) equal to

µi(t) = x0p
(i)
A (t)

σ2
i (t) = x0p

(i)
A (t)

(
1 − p

(i)
A (t)

)
.

Example 3: A numerical example for the first order reaction
chain

Consider the first order reaction chain

S0
c0−→ S1

c1−→ S2
c2−→ S3

c3−→ S4
c4−→ S5

c5−→ S6 (10)

Suppose there are 1000 S0 molecules at time t = 0. The values of
the reaction parameters c0 . . . c5 are 4.3, 16.6, 1.2, 2.8, 11.4, 11.9,
respectively, with unit s−1. The probability mass of S6 at time
t = 1.5 seconds, is shown in Figure 5.
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Fig. 5. Direct calculation of the probability mass function of S6 at
time t = 1.5 seconds.

When x0 → ∞ and p(i)(t) → 0 (e.g. p(i)(t) < 0.1), the
binomial distribution (9) can be approximated by the Poisson dis-
tribution with mean λ = x0 · p(i)(t). The purpose of the approx-
imation is to make the analysis more tractable. In many cases,
however, the condition p(i)(t) → 0 is not valid. Using the reac-
tion chain (10) and reaction parameter c0, . . . , c5 of Example 3, the
probabilities of a single molecule to be in state Si (i = 0, 1, . . . , 6)
at time t are drawn in Figure 6, from which it can be seen that dur-
ing the first 1.5 seconds, many p(i)(t)’s have values greater than
0.1. Therefore, during that period the Poisson approximation is
not suitable.
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Fig. 6. The probabilities for a single molecule to be in state Si

(i = 0, 1, . . . , 6) at time t.

However, if there are multiple sources which are independent
from each other, the probability mass function for state Si is the
convolution of binomial distributions. For example, if there are
y0 molecules injected from source B(in) besides the x0 molecules
injected from source A(in), then

P
(i)
n (t) =

(
x0
n

)(
p
(i)
A (t)

)n(
1 − p

(i)
A (t)

)x0−n

⊗(
y0
n

)(
p
(i)
B (t)

)n(
1 − p

(i)
B (t)

)y0−n

Note that “⊗” represents the convolution along the n axis. We
refer to each of these binomial distributions as components. The
mean µi(t) and variance σ2

i (t) of P
(i)
n (t) are

µi(t) = x0p
(i)
A (t) + y0p

(i)
B (t)

σ2
i (t) = x0p

(i)
A (t)

(
1 − p

(i)
A (t)

)
+ y0p

(i)
B (t)

(
1 − p

(i)
B (t)

)
.

When the values of x0 and y0 are large, the convolution be-
comes difficult to compute. To approximate the convolution result,

a discretized Gaussian distribution is then employed, for example,
as follows:

P (i)
n (t) =

1

D

1√
2πσ2

i (t)
e
−

(
n−µi(t)

)2

2σ2
i
(t)

x0+y0∑
j=0

δ(n − j) , (11)

where

D =

x0+y0∑
j=0

1√
2πσ2

i (t)
e
−

(
n−µi(t)

)2

2σ2
i
(t) .

4. CONCLUSION

In this paper we have presented a new approach for studying first
order reaction networks. By defining the states of a probability sig-
nal system as molecule species instead of molecule populations,
we can use the method for studying chemical reactions with any
number of molecules. The system block diagrams that are em-
ployed in our approach can provide visual decomposition of com-
plicated networks into simpler networks and vice versa. We have
also shown how to obtain the probability distributions of molecule
populations. With this approach, we have derived an analytic so-
lution for the probability distribution of the first order chain reac-
tion. Under the situation where the molecule population is large,
we have found that the Gaussian approximation is more appropri-
ate than the Poisson approximation.
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