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ABSTRACT

This study presents an effective method of blindly
classifying large amounts of gene expression data into
biologically meaningful groups using a combination of
independent component analysis (ICA) and clustering
techniques. Specifically, we show that the genes can be
classified blindly into several groups based solely on their
expression profiles. These groups have a very close
correspondence with benchmarks obtained by studies
using domain knowledge. These results suggest that ICA
can be a very useful pre-processing tool in blind gene
classification, rather than using the resulting sources as
the final model profiles.

1. INTRODUCTION

DNA microarray technology has revolutionised the study
of gene expression. DNA microarrays are capable of
measuring the expression (specifically transcription)
levels of thousands of genes simultaneously, and thus
enable genome-scale analysis. In order to realise the
potential power of microarray experiments, novel
methods are required to accurately extract pertinent
information from vast datasets. An enduring question is
to determine how different sets of genes work together,
i.e. gene pathways, under different conditions. To this
end, we aim to classify the genes into biologically
meaningful groups in an attempt to understand their
interworking under different conditions. This study shows
that using ICA as a pre-processing tool, followed by
clustering is a promising approach to achieving this goal.
We have used the gene expression data of yeast
sporulation, which have been collected by Chu et al. [1]
and are publicly available at
http://cmgm.stanford.edu/pbrown/sporulation. The data
consists of expression levels of 6118 genes, measured at
seven different times during sporulation — at 0.0, 0.5, 2.0,
5.0, 7.0, 9.0 and 11.5 hours. Hence, the dataset is
organised as a matrix of 6118 rows (genes) and 7
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columns (sampling instants), with real-valued entries.
Experiments have shown that during sporulation, specific
genes are active at certain times, which is reflected in a
corresponding significant change in their expression
values, either positively or negatively. If the known genes
can be classified into certain groups based on their
expression profiles, then functions of previously unknown
genes can be inferred from their proximity to one of these
groups. Several approaches have been employed to
perform this classification, including gene clustering,
principal component analysis (PCA) [2], self-organizing
maps and ICA [4]. In this study, we examine a blind
classification method based on a combination of
clustering of genes and ICA pre-processing. The
following sections are organized as follows. Section 2
shows how the gene data are classified into several
groups using domain knowledge, providing a benchmark
for assessing blind classification methods. Section 3
shows how the direct gene clustering and ICA-only based
methods estimate the model profiles. In Section 4, we
present our method for gene classification, followed by a
comparison of results in Section 5. Finally, Section 6
contains conclusions and discussions. The estimated
induction patterns in this study are plotted using different
scales where necessary (due to scale ambiguities
associated with ICA) in order to accommodate them
within the same figure.

2. CLASSIFICATION USING DOMAIN
KNOWLEDGE

Chu et al. [1], classified the gene data into several
meaningful groups using domain knowledge. They hand
picked seven small sets of genes, which are known
representatives of induction patterns of genes belonging
to each category. The expression profiles of these genes
were averaged to obtain seven model induction patterns
over time (Fig 1). We will consider these model patterns
as benchmark or correct patterns. Using these benchmark
patterns, all other genes are classified into one of seven
categories based on their correlation with each model
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pattern. The genes within each category are also ordered
according to the relative magnitudes of their correlation.
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Fig. 1. Model (benchmark) profiles obtained by averaging the
sets of representative genes

3. CLASSIFICATION USING CLUSTERS AND ICA

Here, we examine two known methods to classify the
genes in our dataset, namely direct clustering of
expression profiles and independent component analysis.

3.1. Direct Gene Clustering

One approach to generating model patterns is to directly
cluster the genes’ expression profiles. We present here
the results obtained using this method. After removing
the means of the expression profiles of all the 6118 genes,
we applied k-means clustering to the entire data to obtain
seven clusters. From Fig. 2, we can see that up to four
clusters represent reasonable matches to some of the
benchmark patterns shown earlier, namely those
representing metabolic, earlyl, early-mid and middle
categories. However, the other clusters do not seem to
present any biologically meaningful results. Thus, we can
estimate four of the seven model patterns, though only
prior knowledge enables us to know which four patterns
are meaningful.
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Fig 2. The clusters obtained after direct clustering of the gene
data

3.2. Independent Component Analysis

In an attempt to improve upon the results obtained using
direct gene clustering, the method of ICA was also
applied to the same problem by Hori et al. [4]. This
section partially uses their results. We represent the data
matrix of size 6118x7 as A. In this method, ICA was
applied to the expression data, using the following de-
mixing,

Y = Wx
where ‘x’ is a 7-dimensional vector sampled from the
transposed data matrix A", Hori et al. [4] used the JADE
algorithm to obtain the 7x7 de-mixing matrix, W, and
used the columns of the inverse of the de-mixing matrix
as the estimates of the model induction patterns. The
inverted relation is

x=W'Y
Hence, the columns of the inverse of the de-mixing
matrix represent the required independent sources. Note
here that in a normal ICA formulation, to estimate the
sources as a matrix of size 7x7 would require calculation
of a de-mixing matrix of size 7x6118. Instead Hori et al.
only estimated an unmixing matrix of size 7x7, and used
its inverse as the required matrix of source signals. Thus,
they estimated the independent sources without
calculating the large de-mixing matrix Y of size 7x6118.
This is equivalent to the ‘scalp map’ in the case of EEG
signals de-mixing. A consequence of estimating the
independent components as described is that they must be
linearly independent, since the de-mixing matrix W must
necessarily have full row rank. The columns of the
inverse de-mixing matrix were then used as estimates of
the benchmark patterns, and are shown in Fig. 3. Hori et
al. [4] used only three independent components to classify
the genes to eliminate any ill effects from the components
with small magnitudes. Hence, the calculated de-mixing
matrix is a 3x7 matrix, and the columns of its 7x3 pseudo
inverse matrix were used as the model induction patterns.
Thus, even the ICA-only method can reproduce just three
of the seven model patterns.
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Fig. 3. Columns of the inverse of de-mixing matrix W
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4. CLASSIFICATION USING CLUSTERING OF
ICA PRE-PROCESSED DATA

The ICA-only based approach implicitly assumes that the
observed expression data are generated by linearly
combining the different independent components (these
components are taken as estimates of the model induction
patterns). This model does not accurately reflect the
relation between the benchmark patterns and the observed
data. Chu et al. [1] had calculated the model induction
patterns by averaging the expression profiles of a small
set of representative genes. This would naturally suggest
a clustering based approach as the preferred model for the
relation between the benchmark patterns and the observed
expression data matrix. But the clustering based approach
also does not yield much better results in this case, as
shown earlier. This is because the data is very widely
spread out (has large variance from the benchmark
patterns), and hence the distinctions between the different
categories are very hazy, and difficult to determine. We
propose to use ICA as an important pre-processing step,
after which we perform clustering to extract estimates of
model induction patterns.
We follow the ICA method outlined in the previous
section, proposed by Hori et al. [4], to generate the three
most representative independent components (which are
also linearly independent as described earlier, and hence
can be interpreted as a basis for the seven-dimensional
vector space containing all the 6118 gene expression
patterns as data points — we use this next, in our study).
Unlike in [4], we do not use these components as the
estimates of the model induction patterns. Instead we use
the independent components to define a new vector space,
which is important in the pre-processing of our data. Let
us denote by M, the 7x3 pseudo-inverse of the de-mixing
matrix, W, described in the previous section. We
postulate that the columns of this matrix, M, form a basis
for a space that very accurately contains the benchmark
induction patterns. Thus, each model induction pattern
can be represented as a linear combination of the columns
of M. Now each gene is projected onto the space spanned
by the columns of M. This is achieved by computing the
product:
M x5

where x; 5 is a 3-component vector, calculated as

xis = (M™)'M™>
and b is the gene being projected.
Note that projection onto the column space of M requires
the computation of its pseudo-inverse, which results again
in the original de-mixing matrix W, i.e. (M™M)'M" = W.
We now perform clustering of the projected data. Instead
of clustering the projected genes themselves (the product
M xi5), we perform clustering on the 3-component
feature vectors, x;g, obtained when projecting each gene.

The new vector space is spanned by the three main
(linearly) independent components of the dataset - it is a
space that captures the ‘essential characteristics’ of the
data. The benchmark patterns are an indication of the
main ‘shapes’ present in the data. Hence, since the new
space captures the essential characteristics of the data, it
should accurately contain the main variants in the data.
When the rest of the data is mapped into this space, the
large variants or ‘outliers’ that make direct clustering
difficult, tend to fall into the nearest model pattern. This
makes the separation sharper, thus making the data more
amenable to clustering. It should be noted that as more
and more independent components are used to form the
vector space, it results in poorer performance since the
space becomes more ‘general’. The use of ICA here is a
crucial pre-processing step. A similar basis for a new
space can also be obtained by computing the singular
value decomposition (SVD) of the expression data. But
the basis of the space formed using the SVD yields
inferior results to those obtained using ICA. This is
possibly because ICA returns components that are ‘as
independent as possible’, without requiring them to be
orthogonal, and hence captures the underlying nature of
the data very effectively in only a few components.
Another popular pre-processing method is PCA, but this
also results in poor estimates. In fact, Yeung et al. [3]
showed empirically, working on this same dataset, that
clustering with PCs instead of the original variables does
not necessarily improve, and often degrades cluster
quality. The clustering of the mapped genes results in
patterns that are much more biologically meaningful than
those obtained by earlier methods. The genes can then be
classified into one of seven groups according to the
correlation coefficient between the gene and each group.
All seven cluster patterns thus obtained, shown in Fig 4,
appear to be very close to the benchmark patterns shown
in Section 1, as compared to only three and four obtained
using ICA-only and direct clustering respectively. This is
an impressive result for a purely blind method.
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Fig. 4. The seven cluster patterns obtained using clustering of

ICA-pre-processed data
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5. COMPARISON OF RESULTS

In this section we visually demonstrate the superior
separation obtained when using ICA as the pre-
processing method prior to clustering. As explained in
the previous section, the three-dimensional projection co-
ordinates are calculated for the top 200 genes from each
model class as identified by Chu et al. [1]. Similarly,
projection co-ordinates are also computed along axes
obtained using principal component analysis (PCA), as in
[2] and SVD. The resultant plots are shown in Fig 5.

Projection Co-sfficient2 1

Fig. 5. Projection co-ordinates of top 200 genes from each
model class, projected along ICA axes (top), PCA axes (bottom
left) and SVD axes (bottom right)

Figure 5 clearly shows the improved separation between
the classes obtained using ICA as a pre-processing
method as compared to PCA or SVD (these plots are best
viewed in full colour). Earlier, we have already
established the suitability of employing clustering as the
preferred physical model for data generation, and now we
have also shown how clustering can be improved by
significantly enhancing the class distinctions using ICA.
Finally, we also compare the seven clusters obtained
using this method with the benchmark patterns. The
correlation coefficient between each benchmark pattern
and its nearest cluster estimate were computed. Once the
patterns have been estimated, they can be used to classify
all the genes into different categories. A number of
methods have been employed to perform this
classification, and is, in itself another research topic. We
restrict ourselves to trying to blindly estimate the
benchmark patterns as closely as possible. The best
matches among the clusters, along with the correlation
coefficients were:

Metabolic (0.9538), Early 1 (0.8295), Early II (0.9253),
Early-Mid (0.9478), Middle (0.9863), Mid-Late (0.9788),
Late (0.7670 — this increases to 0.9231 if only the

biologically important points, i.e. the positive values
representing gene induction, are considered.)

Not only do the clusters represent excellent matches for
the benchmark patterns but, crucially, each cluster is
mapped to a distinct model pattern, i.e. all seven clusters
are biologically meaningful. In contrast, using only ICA
or direct clustering produces just three and four estimates:
ICA only: Meta (0.73), Earlyl (0.79), Mid (0.98).

Direct Clustering: Meta (0.94), Earlyl (0.93), Mid (0.99),
Early-Mid (0.99).

6. CONCLUDING REMARKS

This study has shown that ICA is a useful technique, but
the sources cannot be taken as the final model estimates
in classification of genes based on their expression
patterns. Such a model does not accurately reflect the
underlying physical model of data generation. However, it
can form a very effective pre-processing step, producing a
vector space onto which the data can be projected so as to
enhance separability. This blind classification method
uses no domain knowledge and results in profiles that are
impressively close to those obtained by handpicking.

We note that this method has only been tested on yeast
sporulation data. Though the results are very promising,
its performance on other datasets needs to be examined.
Secondly, we have only used k-means clustering to obtain
the model induction patterns, using the Euclidean
distance as the criterion for grouping data in the projected
space. It would be interesting to try other clustering
methods, such as hierarchical clustering or dynamic k-
means, and also using other criteria for grouping.

In conclusion, we emphasize that our method reflects the
underlying model for data generation, and significantly
outperforms the other blind classification methods.
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