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ABSTRACT

To separate and localize the P300 sources within the brain 
a robust constrained blind source separation (CBSS)

algorithm has been proposed. The algorithm is an extension 
of the Infomax algorithm, based on minimization of mutual 

information, for which a reference P300 signal is used as a 

constraint. The reference signal forces the unmixing matrix 

to separate the sources of both auditory and visual P300 
resulted from the corresponding stimulations. The

constrained problem is then converted to an unconstrained 
problem by means of a set of nonlinear penalty functions. 

The P300 sources are then localized based on electrode –

source inner products .

1. INTRODUCTION

P300 is a positive event-related potential (ERP), which 

occurs with a latency of about 300 ms after rare or task 
relevant stimuli [1]. This is particularly relevant to

psychological aspects such as cognition or attention. There 

are two P300 sub-components that overlap at the scalp; P3b 

has a more centro-parietal distribution and corresponds to 
the classical P300 recorded within an oddball paradigm 

after rare and task relevant events. P3a occurs after novel 
events independently of task relevance and is characterized 

by a more frontal distribution, a shorter latency and fast 

habituation. The parietal and temporal cortex are involved 

in the generation of the auditory P3b. Concerning P3a, the 
superior temporal plane, the association cortices, limbic 

structure and frontal as well as pre-frontal cortices appear 
to play a major role. An increase of P300 latency with age 

is found for the temporo-basal but not for the temporo-

superior dipoles. Figure 1 illustrates some typical P3a and 

P3b waves from temporo-basal and temporo-superior

dipoles [1]. Attenuation of auditory and visual P300 signal 

can be a sign of schizophrenia. For the patients suffering 

from schizophrenia, the shape, amplitude, and even the 
position of the P300 may change. Furthermore, children of 

schizophrenic parents and other subjects with an enhanced 
risk of developing schizophrenia showed P300

abnormalities. The reduction in the amplitude of P300 is 

also found in patients with dementia and with affective 

disorders. However, the amplitude reduction of P300 is 

neither a sufficient nor a necessary marker of schizophrenic 

disorders. However, it has been clinically observed that the 
patients with a P300 amplitude reduction are a sub-group

with neuro-developmental disorders. Moreover, the
amplitude reduction is more consistent in P3b

subcomponents.

Fig. 1. Typical subcomponents of the P300 signals; ) and 2) P3b, 
and 3) and 4) P3a signals 

       Blind separation of the EEG signals on the other hand, 

has been followed by a number of researchers [2] [3] [4]. 

The infomax algorithm [5] has been reported to be robust 

for separation of EEG signals. Some source separation
problems such as signal detection and noise cancellation 

often expect to estimate a desired single source or a subset 
of sources from the mixtures. In such cases a separate 

function, as a constraint, has to be minimized (or

maximized) in parallel with minimization of the original 

cost function. Exploitation of Lagrange multipliers [6] and 
nonlinear penalty functions [7] incorporates the constraint 

terms into the original cost functions thereby converting 

the constrained problem to an unconstrained one. 
       The instantaneous BSS formulation is as follows.

Denote the time varying observed signals by
T

n txtxtx )](.,..),(),([ 21=x  where nR∈x  and the

unknown independent sources by
T

m tststs )](.,..),(),([ 21=s  where mR∈s .

vsx += A (1)

and

xy W= (2)
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Here nR∈v is assumed to be a white zero mean Gaussian 

noise vector, mnRA ×∈  and nmRW ×∈  are unknown

constant mixing and unmixing matrices respectively, and 

(.)
T
 is vector transpose. The mixture is assumed to be over-

determined (valid for usual cases), i.e. m<n.
T

m tytyty )](.,..),(),([ 21=y , where m
R∈y  is the output 

vector. The unconstrained separation matrix can be found 

by finding the global minima (or maxima) of a cost

function )(WJ M , which provides a measure of

independency of the estimated sources. 

        Incorporation of the constraint requires another cost 

function such as )(WJC
 to be minimized together with 

)(WJ M . The constraint term is then joined to the main 

objective function by using either a Lagrange multiplier or 

a set of penalty functions. Application of penalty functions, 

however, affords more opportunity to relax the constraints 

and exploit the possible nonstationarity of the mixtures. An 
overall cost function is best defined as :

( ))()()( WWW CM JkGJJ += (3)

where G(.) is the penalty function and k  is a penalty 

coefficient. In the following sections a new constrained 

BSS method based on the original Infomax BSS system
and incorporating a reference signal as a constraint is

introduced for detection and localization of the P300
sources within the brain from the EEGs.

2. THE CONSTRAINED ALGORITHM

In an undetermined BSS system the estimated ICs do not 

necessarily represent the actual sources. This happens
when EEGs are to be separated. In the development of this 

project we aim at separation of the scalp EEG mixtures in 

such away that the desired P300 signal is one of the

estimated ICs. The Infomax BSS algorithm is based on 
minimization of the mutual information or maximization of 

the entropy. The Infomax cost function )(WJ M , can be 

found in the literature [5]. The unmixing matrix is

recursively updated on the basis of; 

( )[ ])()( ww
W

CM JkGJminargW += (4)

Here )(WJ M  is the main objective function of the 

Infomax BSS algorithm and 

22
)( xpypW WJC −=−= (5)

where p is a matrix built up of rows, each equal to the 

P300 reference signal. The reference signal is obtained by 
averaging several segments of the same electrode signal 

after a visual or auditory periodic stimulation. The update 

equation is generally denoted as 

)()()1( tWtWtW ∆+=+ (6)

where extending the NGA as in [6] we have
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Here γ  is a constant, I is a unitary matrix. W is initialised 

toWinit = I and µ is the learning rate, calculated empirically 

via the following adaptive criterion:
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where µ0 , α, β, and ζ are constants adjusted manually. In 

the above formulation q is updated iteratively based on the 

new W in the direction of minimizing the distance between 

the output ICs and the P300 reference signal i.e.

[ ] LWWdiagk
T

)(. pxp)(xq −−=  (9)

where k is the penalty parameter and L is the length of the 

signal. In the above analysis we ignored the effect of noise, 

which is inherently contained in x. However, incorporation 

of the constraint into the original infomax update equation 

does not generally change the performance of the system in 
terms of noise effect. In fact, it is likely to regularize this 

effect.

3. LOCALIZATION CRITERION

Localization of the EEG sources has been investigated 

recently [3] [8] [9]. With some indeterminacy in the results 

we can approximate the location of the sources in the brain. 

Unlike the methods in [8] and [9], which consider the 
sources as magnetic dipoles, we consider them as the

sources of isotropic propagation. Therefore the head
(mixing media) model only mixes and attenuates the

signals. Therefore based on Figure 1 we have

jjk d=−
2

af (10)

where fk and aj refer to the source and the electrode

coordinates respectively, and dj are nonlinearly

proportional to the inverse of the correlations between the 
estimated source k and the electrode signals. j  = 1,2,3 

represent the electrodes involved in calculation of the 

correlation values, and k  = 1, 2, . . . , M, show the source 
numbers. In this equation all the variables except fk are

known. Incorporating more than three mixtures does not 

affect the result whereas it makes the computation more 

intensive. The nonlinearity stated above comes from the 
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fact that the head is not a homogenous region. In a 

spherical model of the head we may consider three main 

layers; brain, skull, and scalp for which the thickness is 

known. The conductivity of the skull, σskull, is from 10 to 

100 times less than those of the brain and the scalp i.e. 

10σscalp <σbrain = σscalp  < 100σskull. In order to

incorporate the non-homogeneity and ensure that there will 

be a solution to equation (10) within the brain region, these 
values have to be nonlinearly mapped and normalized such 

that all the estimated sources fall within the brain region. In 

addition we assume that we have the solution for some 

certain EEG sources such as normal Delta rhythm.

Fig. 1. Scalp model including three electrodes, and the location of 
the source to be identified (assuming the head is homogenous)

4. EXPERIMENTAL RESULTS

In this part the proposed CBSS algorithm is applied to the 

simulated as well as real EEG data. The sampling
frequency is 200 sample/sec. The data is pre-whitened and 

W, the separation matrix is initialised to I. The P300 

reference signal is achieved by temporal averaging of each 

electrode signal. This signal is then used as a reference for 
updating the unmixing matrix. 

(a) (b)

(c) (d)
Fig. 3. The results of separation of simulated P300 signal; (a) the 

original sources, (b) the mixtures, (c) the estimated sources using 
the traditional and (d) the estimated sources using the constrained 

Infomax algorithms; all plots are amplitude vs. time.

          The algorithm attempts to minimize the Euclidian 

distance between the output of CBSS and the reference 
P300. In the first experiment only three mixtures including 

the P300 have been modelled and used. Figure 3 compares 
the results of separation using traditional Infomax BSS 

algorithm and those of the proposed constrained technique. 

The convergence of the system proved to be faster than that

of the well-known NGA -based joint diagonalization
criterion. Also the Euclidean distance between the

estimated P300 output and the P300 reference was smaller 
with CBSS. In the next experiment the reference P300 

signal has been estimated from the mixtures by temporal 

averaging the signal. The period of the stimuli is ten

seconds and it lasts for 0.5 second. We avoid any eye 
blinking or other artefacts. Figure 4 shows the results of 

separation of the P300 signal for a schizophrenia patient. 

(a) (b)

Fig. 4. The results of separation of a real P300 signal in a 

schizophrenia patient, using the constrained Infomax algorithm; 
(a) the EEGs and (b) the separated signals using CBSS, the top 

signal is the separated P300 (only 4 out of 10 signals have been 
disp layed here).

After separation, the estimated highlighted component is 

localized through the following steps: (a) The correlation 

values are inverted and normalized between 0 and 1, (b) A 

nonlinear µ-law function, with 100>µ >25, is used for 

transformation of the correlation values, (c) The

transformed values were scaled into between 12 mm and 
the radius of the head, as dj, and (d) The solution to the 

following least square problem was obtained [10]:

{ } n
k

j

jjkk RdS ∈−−= ∑
=

faff ,min)(min

23

1
2

(11)

Although by following the above steps still we may have 
different solutions to equation (12), in all the cases auditory 

and visual P3a subcomponents are consistently localized in 
two different regions of the brain. For a head phantom, in 

more than 95% of the cases an exact localization of the 

sources has been achieved.  Both P3a and P3b signals are 

localized around the temporo-superior dipoles and
temporo-basal dipoles respectively. 

         In another experiment the auditory and visual P300 
have been analysed separately. 64-electrode settings were 

used. In Figure 5 a reference segment for Visual

stimulation has been given by temporal averaging. In 
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Figure 6 the inner product of this signal and the electrode 

signals are calculated. The horizontal axis shows the

electrode number in the same order as the conventional 

EEG electrode setting. 

Fig. 5. The estimated visual P3a signal using CBSS.

Fig. 6. The correlation between the estimated visual P300 and the 

electrode signals; horizontal axis shows the electrode number. 
Two different trials have been recorded.

In another experiment a reference signal for auditory P300 has 
been obtained by temporal averaging (Figure 7). Similarly, the 

correlation between this signal and the electrode signals are 
calculated and displayed in Figure 8. Comparing Figures 5 and 7 

it can be concluded that the latency for visual P300 is more than 
for auditory P300.  Also Figures 6 and 8 clearly show that the 

auditory and visual P300 sources are located in two different 

regions within the brain. Higher SNR, Less Euclidean distance of 
the desired output with the reference, and faster convergence 

concluded.

5. CONCLUSIONS

A new CBSS method has been developed and used for 

separation and localization of the auditory and visual P300 

sources . The algorithm is an extension of original Infomax 
algorithm, for which a reference P300 signal is used as a 

constraint. The constrained problem is then converted to an 
unconstrained problem by means of nonlinear penalty

functions weighted by the penalty terms. As a result, both 

auditory and visual P300 can be separated and well

localized. In addition it is shown that the latency for above 
two P300 signals is different. The method is an effective 

tool in investigation of the schizophrenia disease (as well 
as some other neurological disorders such as Alzheimer’s) 

in neurophysiology and psychiatry departments.

Fig. 7. The estimated auditory P3a signal.

Fig. 8. The correlation between the estimated auditory P300 and 

the electrode signals; horizontal axis shows the electrode number. 
Two different trials have been recorded.
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