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ABSTRACT

A novel efficient technique based on Radon-ambiguity transform 
(RAT) for time delay and Doppler stretch estimation is 
presented in this paper. The proposed approach combines the 
narrowband ambiguity function (NAF), the wideband ambiguity
function (WAF), and the Radon transform (RT) to estimate 
multiple targets in noisy environments. The main ridges of NAF 
represent straight lines whose slopes depend on the Doppler 
rates of the moving targets. These lines could be effectively
detected by computing the RT of the NAF for all possible
angles. However, the computation of RT for all possible angles 
is computationally exhaustive. It is shown in this paper that 
without calculating the entire RAT, it is possible to estimate 
target parameters using only a single slice of RAT i.e. using an
appropriate projection of the NAF. The resolution issue and the
effect of the integration length of RAT in complex white 
Gaussian noise are also discussed. It is demonstrated that the 
proposed method can successfully separate overlapping targets. 

1. INTRODUCTION 

The detection of target return signals is an important problem in 
many sonar and radar applications. In these applications the 
signals are usually broadband, and thus the target parameters 
(time delay and Doppler stretch) are usually estimated via 
wideband matched filter processing. In this paper, Gaussian-
enveloped linear frequency modulated (GLFM) signals are used 
as the transmitted signal as they are known to possess very good 
resolution properties for target parameter estimation [4] [5].

Detection of monocomponent linear frequency modulated
(LFM) signal in noise-free environment is a relatively simple
task. However, detection of multicomponent LFM signals in the 
presence of noise requires techniques that are immutable to noise
interferences. The Wigner distribution (WD) has been found to
be useful for analyzing and detecting nonstationary signals [8].
But in multicomponent signals condition, the WD suffers from
cross-terms interference seriously [2]. The RT [1] [3] of a time-
frequency distribution produces local areas of signal
concentration that facilitate interpretation of multicomponent
signals. The major advantages of RT are that lines are allowed to
intersect and it is very robust to noise. In [1], the Radon-Wigner
transform (RWT) which is equivalent to the dechirp method has 
been used to analyze time-varying nonstationary signals. But 
RWT is the task of tracking straight lines in the time-frequency
plane into locating maxima in a 2-d plane, which is a 
computationally intensive technique. In [2] [3], it was assumed
that all directions of interest pass through the origin of the
ambiguity plane and only the received signal was used in the

processing. Under this special assumption delay and Doppler 
cannot be estimated simultaneously. Moreover, time delay
cannot be measured by using only the received signal. But in 
many cases we may need to estimate both time delay and
Doppler stretch, simultaneously.

In this paper, we propose RAT technique that combines the
NAF and RT to estimate multiple GLFM sonar target parameters
simultaneously. We also show that RAT in conjunction with a 1-
d search on the WAF achieves the Cramer-Rao lower bound
(CRLB) for parameter estimation. 

2. WIDE AND NARROWBAND AMBIGUITY 
FUNCTIONS OF GLFM SIGNALS 

Consider a transmitter that transmits a signal . Then the 
received signal from a single scatterer is given by

)(ts

)]([)( tstr  (1) 

where  is the time scaling and  is the time delay. The form
of the signal in (1) is called the wideband model. The wideband
model can also be approximated by the narrowband model [6] as 

)2exp()()( tfjtstr . (2) 

With this model, time scaling the signal by  is approximated 
by a Doppler shift, . For a signal with carrier frequency, ,
the approximation is [6]

f k

kf )1(                  (3) 

For wideband signals the target detection is usually performed 
using the signal  via a matched filter processing approach
in the delay-scale

)(tr
( ),  domain. The delay-scale domain

matched filtering is described by the following 

dttstrsr )]([)(),( * . (4) 

Equation (4) defines the WAF between the transmitted and the
received signals. Note that the NAF between the transmitted and 
the received signals is expressed in a different form, i.e. 

dttfjtstrfsr )2exp()()(),( * . (5) 

The complex form of the transmitted GLFM signal is given by

]}2[exp{)( 22 ttkjtts  (6) 

where the instantaneous frequency at t  is given by ;0 k  is 
the frequency sweep rate;  is an amplitude scaling.

The detail analytical expressions, a comparative discussion of
the delay-Doppler resolution issue, the main ridge characteristics 
and the behavior of NAF and WAF of GLFM waveforms have 
been discussed in [4] [5]. In [4] [5], it has been shown that 
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Using the approximate angle a , we will now demonstrate how 
RAT can be efficiently used to estimate multiple targets. 

WAF exhibits better resolution properties than NAF in delay-
Doppler domain. In the following sections we will use RT in
conjunction with NAF and WAF to estimate target parameters. Computing RT of NAF at an angle a  is equivalent to 

computing the projection of rotated-NAF of the dechirped signal
at a . Here, rotated-NAF is computed by dechirping both the 
transmitted and the received signals. The projection of rotated-
NAF on  axis could be computed efficiently using the dechirp 
technique as follows. The square modulus of NAF between 

 and  is defined as 

f

y)(tx )(t

3. RADON-AMBIGUITY TRANSFORM 

The RT of square modulus of NAF is defined as the integral 
along a straight line defined by a distance  (radius) from the 
origin and angle of inclination  formed by the  and  axis

2
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Taking integration in both sides of (12) with respect to where  and 0 .    (7) 

22
2

2* )()()()()( fYfXddtetxtyf tfj (13)Equation (7) defines the RAT and it represents the sum of

sr
 along the line located at a distance 2|(.)|  from the origin. 

For a given angle , the peak position of  can be deduced as where  and  are the dechirped transmitted and 
received signals, respectively;  and Y  are the FFT of

 and , respectively; and the sign

)(tx )(ty
)( fX )( f

)(tx )(ty  denotes 
convolution. Using (13) the projection of rotated-NAF (single 
slice RAT) could be efficiently computed due to the FFT-based
processing. Using a  and the peak position  in (13), we can 
calculate  using the geometrical relation .

pf

pp asinpf

sincos fp .                (8) 

Equation (8) suggests that for known ( ,
 describes a line passing through the

target parameters (

),p
sincos fp

), f  in the NAF plane. Using the mapping
in (3), the corresponding line in the WAF plane is given by

Fig. 2 (right window) shows the RAT of Fig. 1 by using only
one slice at an angle a . There, we can clearly see the three 
peaks corresponding to three targets. Fig. 2 (left window) is 
generated from the entire RAT and Fig. 2 (right window) is 
generated from only one slice of RAT but they both show the 
existence of three targets. From the single RAT slice three peak 
positions for radius could be estimated. Then using the line 
in (9), a 1-d search on WAF could be used to estimate the 
parameters. (The three search lines are shown in Fig. 3.) The
necessary steps, and the type of processing, for estimating
parameters from the single slice of RAT are as follows:

pi

sin)1(cos kp . (9)

Since the echo of a target is a GLFM signal, when more than
one targets exist, we can effectively distinguish the targets from 
each other according to the slope of each line of ambiguity
function respectively, as shown in Fig. 1. The targets in Fig. 1 
can be detected using the entire RAT, which is shown in Fig. 2 
(left window). Note that each target shows a peak in RAT plane 
at i  and , where i .pi 3,2,1

The RT of Fig. 1 is calculated for all possible . Note that 
the calculation of RAT for all possible angles is computationally
intensive. In the next section we will demonstrate the efficient 
way of computing the target parameters. 

Estimate a projection angle a  (using 2-d FFT and the 
LSE technique).
Compute the single slice RAT of Fig. 1 at the angle a  as
in Fig. 2 (right) {efficient dechirp technique via (13)}.4. PARAMETER ESTIMATION PROCEDURE 

Perform a 1-d search on the RAT slice to find .pi
Based on (9), without computing the entire RAT, it is possible to 
estimate parameters using only a single slice of the RAT i.e. 
using an appropriate projection of the NAF. The appropriate
angle for projection, a , can be estimated using 2-d FFT of the
NAF using least square estimation (LSE). Then the RT slice of 
Fig. 1 is calculated at angle a . The approximate computation 
of the slope of the main ridge of NAF,  (also slope angle m a )
using 2-d FFT can be computed directly from signal without
prior computing NAF. After some algebraic manipulation the 2-
d FFT of the squared modulus of NAF in (5) can be deduced as 

A 1-d search in Fig. 3 along the line 
 to estimate the peak

positions of each target, 
aiaipi k sin)1(cos

i  and i .

The line search in Fig. 3 can also be efficiently implemented
without computing the whole WAF. Instead of computing the 
entire WAF we can compute 1-d WAF along the straight lines 
indicated in Fig. 3. From (9), the equation of the straight line 
which passes along the main ridge (see Fig. 3), can be defined as 

1
sin

cot
k
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k

p
. (14) 
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Therefore, using (4) and (14), the WAF could be efficiently
evaluated for a 1-d search in the vicinity of the approximate
parameters. Fig. 4 shows the block diagram detailing the 
computation sequences of the proposed algorithm. 

where  and  are the auto-ambiguity functions of the
transmitted and received signals, respectively. The slope of main 
ridge of | could be estimated using LSE technique. 
This technique could also be applied in the case of multiple
targets. The slope of the main ridge in (10) can be deduced as

sA rA

|)v,(uF
5. RESOLUTIONS AND THE EFFECT OF THE 
INTEGRATION LENGTH OF RAT IN NOISE 

)1)((

2
2222

2

m (11)

In this paper we have used RAT as a square-law detector since it 
performs better than envelope detector for stronger or equal 
strength LFM signal detection [2]. The 3-dB response width of 

 from (7) for a given )1,0(  can be deduced as
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 (20) The 3-dB width can be considered as a measure of selectivity
of the estimation [2]. When  is zero, ),(  becomes a
delta function. Fig. 5(a) and (b) show the resolution of RAT for 
a single target. As expected, the peak position shows the exact
location of the target in both  and  domain. Fig. 6(a) shows 
the result of a bicomponent signal. From Fig. 5(a), (b), and 6(a),
we can say that RAT provides very high resolution. 

The signal-to-noise ratio (SNR) is defined as signal energy to
noise power, which is the total SNR. Simulations show that, for 

),( 00  = (-0.06, 1.0), i.e. well separated targets, the estimator
closely meet the CRLB in high SNR. On the other hand when 
targets are not well separated, for ),( 11  = (-0.22, 0.95) and 

),( 22 = (-0.08, 1.08) the estimation error difference with the 
CRLB is about 20dB. This is mainly due to the bias incurred by
the other target. It can also be seen that when SNR<10dB the 
target parameters can not be estimated accurately [7]. (Note that
the CRLB is shown for 1 because the CRLB’s are almost
the same for all the three targets.) 

The effect of the integration length of RAT in complex white
Gaussian noise is discussed here. Due to the space limitation we
are not able to show the statistical derivation of RAT. Therefore,
we only present the final result. The performance of the 
detection process can be expressed as

2
1

01
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)]|var()|[var(
2

1
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HEHE
. (16)

7. CONCLUSION 

Thus, the effect of the integration length T on the detection 
performance can be deduced as

2
1

0
2

)()(

/

T

T

duuTderfuTderf

NdTerfdA
 (17) 

An efficient technique based on single slice RAT for time delay
and Doppler stretch estimation has been presented in this paper.
The proposed approach combines the modulus square of NAF, 
the modulus square of WAF, and the Radon transform to
estimate multiple GLFM sonar target parameters in noisy
environments. Simulation results have been presented to show
the effectiveness of the proposed technique. 
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Fig. 5. Resolution of RAT for a single target. The parameters are
),( 00  = (1, 0). Expected . (a) Rotation 

Angle versus Amplitude, (b) Radius versus Amplitude.
)0,135(),( 0

00
Fig. 1. Contour plots of NAF in the presence of three targets. 
The target parameters are ),( 00  = (-0.06, 1), ( ), 11 =
(-0.22, 0.95), and ( ), 22  =  (-0.08, 1.08). 

-100 -50 0 50 100
0

5

10

15

20

25

Radius

A
m

p
li
tu

d
e

(a)

20 40 60 80 100 120 140

0.6

0.7

0.8

0.9

1

1.1

Integration length

N
o

rm
a
li
z
e
d

 a
m

p
li
tu

d
e

(b)

120 125 130 135 140 145 150
0

20

40

60

80

100

120

140

160

180

200

Rotation Angle (degrees)

R
a
d

iu
s

0 10 20

Amplitude

Fig. 6. (a) Resolution of RAT for a bicomponent signal in 
(radius) domain. The two targets parameters are ),( 00  = 
(0.006, 1) and ),( 11  = (-0.006, 1). (b) Detection performance 
of RAT with the variation of the integration length T .

Fig. 2. Entire RAT of Fig. 1 (left window) and single slice RAT 
of Fig. 1 at the angle 135a  (right window). 
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Fig. 3. Contour plots of WAF of the same signal as in Fig. 1 and 
the three search lines.
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