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ABSTRACT

We present a new approach to radar pulse train analysis in
electronic warfare. We consider an alternative to the classical Time-
Of-Arrival (TOA) histogram technique commonly used for extrac-
tion of complex pulse patterns. We derive a Hidden Markov Model
for the radar word templates, and develop a modi£ed version of
the Viterbi algorithm to extract radar words from noisy and cor-
rupted pulse sequences. We argue the advantages of this approach
compared to the standard TOA histogram technique, and illustrate
operation of the algorithm with computer simulation results.

1. INTRODUCTION AND PROBLEM STATEMENT

We present a new approach to radar pulse train analysis in radar
Electronic Support (ES) systems of the defensive Electronic War-
fare (EW) suite. The goal of ES is to collect and analyze poten-
tially hostile radar signals. Responses to this information may
range from simple warnings issued to the operator, to initiating
soft- or hard-kill countermeasures. (See [1] for review of the £eld
of Electronic Warfare). Speci£cally, ES must be able to deci-
pher the tactical situation, including the type and threat-potential
of radar emitters, using only the received signal.

One major dif£culty in this task is the overlapping RF chan-
nels used by military radar systems. The individual signals cannot
be easily distinguished and must be de-interleaved into tracks that
can be associated with unique emitters [2]. Moreover, the tracks
must be classi£ed and identi£ed with speci£c emitter types using
the data stored in a data base of Electronic Intelligence (ELINT).
Such factors as the direction of arrival of electromagnetic waves,
the carrier frequency, as well as pulse sequence structure are vital
input variables to this decision process. After the source emit-
ters have been identi£ed and pulses de-interleaved, the states of
the radars and, consequently, the levels of threat associated with
them, have to be estimated. This presents a broad range of op-
portunities for application of decision-theoretic, estimation, and
discrete event system techniques. The approach presented here
addresses some of the issues associated with detection and estima-
tion of radar states encoded in radar signals.

An important goal of ES is to evaluate the level of threat posed
by a potentially hostile radar [1]. Typically, the threat is closely
associated with the generalized state of the radar i.e. Search, Ac-
quisition, Tracking, or Missile Engagement. Track-While-Scan
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(TWS) radars and Multi-Function Radars (MFRs) can simultane-
ously perform multiple functions related to several targets. There-
fore, evaluating the threat that such radars pose is one of the most
challenging tasks of ES. The use of Hidden Markov Models (HMMs)
to describe radar signals for this application was initially suggested
in [3]. In [4], we presented a case study where we built a mathe-
matical model of MFR and suggested an optimal state estimation
algorithm to infer the radar state from observed data. We demon-
strated the convenience of associating two levels of data organiza-
tion with the MFR emitter signals – the pulse level, and the word
level. Radar words, can be de£ned as static, or dynamically vary-
ing, groups of pulses that MFRs emit in different states. The ability
to recognize these groups of pulses brings us closer to evaluating
the radar state, and to estimating its threat level. Thus, one compo-
nent of the pulse train analysis for ES is a problem of recognition
of radar words. The radar words have to be extracted from the dis-
torted pulse sequences recorded by the ES in a noisy environment.
In Fig. 1, we show examples of word pulse structure for two differ-
ent sample radar emitters. A detailed speci£cation for these words
can be found in Appendix A.

Several dif£culties need to be addressed while solving the com-
plex pattern recognition problem of extracting MFR words from
the stream of observed pulses:

1. Radar pulses are observed through a stochastic non-stationary
environment, characteristics of which may be unknown.

2. De-interleaving algorithms may fail to correctly separate
distinct pulse sources. For example, pulses originating from
one emitter “leak” into tracks that are predominantly asso-
ciated with another emitter.

3. The observed pulse sequence is subject to quantization dis-
tortions due to absence of synchronization between the ES
receiver and the radar.

The £rst two items can be modelled as various forms of elec-
tromagnetic pulse propagation channels. A simple binary, or bi-
nary erasure channel model is adequate for the £rst item. More so-
phisticated channel models such as Markov-Modulated channels
can be used to emulate the effect of de-interleaver confusion. In
this study, we only considered the binary channel in which pulses
emitted by the radar could be lost with a probability pmiss (the
probability that no pulse is detected at a particular quantization
instant, given that one should have occurred in the corresponding
signal), and spurious pulses could be introduced with a probability
pspur (the probability that a pulse is detected at some quantization
instant, given that none was radiated).

The quantization distortions are due to the details of the spe-
ci£c hardware implementation of the ES. In general, the pulse se-
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Fig. 1. Sample multi-function radar words.

quence quantization process is controlled by an observer clock de-
scribed by a period Tobs. The theoretical synchronized pulse quan-
tization model is de£ned by the following expression

ni ≡
⌊

ti

Tobs

⌋
, (1)

where ti is the relative Time-Of-Arrival (TOA) of the received
pulse, and ni is an associated quantization index.

In practice, the pulse quantization model must include a uni-
formly distributed random phase ϕ ∈ [0, Tobs) to accommodate
for the asynchronous nature of the radar-ES engagement,

n′
i(ϕ) =

⌊
ti + ϕ

Tobs

⌋
=

{
ni , with 1 − pi

ni + 1 , with pi
. (2)

The new quantization index n′
i(ϕ) is a function of the random

phase ϕ, and pi is the pulse splitting probability

pi ≡ ti

Tobs
− ni . (3)

Traditionally, the algorithms used for pulse train analysis in
ES are based on Time-Difference-Of-Arrival histograms of either
autocorrelations [2] or cross-correlations [5]. These algorithms are
very simple and computationally ef£cient. However, their perfor-
mance is not satisfactory for highly structured pulse sequences like
those in Fig. 1 (see [6]). In the following sections, we present
an algorithm rooted in the theory of HMMs that can be used to
successfully solve the problem of word extraction from the de-
interleaved MFR pulse sequences. We also show simulation re-
sults on some synthetic data generated for MFRs with the words
shown in Fig. 1. In contrast with the traditional pulse train analysis
algorithms, the performance of the proposed algorithms improves
with the increasing complexity of the word pulse patterns.

2. HMMS AS RADAR WORD TEMPLATES

In this section, we derive a statistical model for radar word tem-
plates. The radar output can be represented in a quantized time
domain de£ned by (2). Following [3], the appearance or absence
of pulses at any given quantization instant can be represented, re-
spectively, by 1 or 0 in a binary sequence. A single pulse, followed
by a dead time can be viewed as a fundamental building block of
any radar pulse sequence in the quantized time domain. This build-
ing block can be represented by a Markov chain shown in Fig. 2.
The transition matrix for the Markov chain of the ith pulse-interval
within the kth word is given by

A
′
k,i =

⎛
⎜⎜⎜⎝

0 pi 1 − pi 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (4)

Fig. 2. Atomic Markov chain.

We refer to this structure as an atomic Markov chain. It is a left-to-
right Markov chain [7], owing to the super-diagonal structure of
the transition matrix. Furthermore, almost all non-zero transition
probabilities are equal to 1; the only exception is the transition
from the £rst state, which follows the PRI distribution of (3).

Any sequence of pulses emitted by a radar can be represented
by the conjoining of an appropriate number of atomic Markov
chains (4). By connecting these together, we can design models
for words of arbitrary complexity, including those shown in Fig. 1.
The transition probability matrix Ak of a composite Markov chain
for the the kth radar word template will have the following form

Ak =

⎛
⎜⎜⎜⎜⎝

A
′
k,1 A

′′
k,1 0 0 0 · · ·

0 A
′
k,2 A

′′
k,2 0 0 · · ·

0 0 A
′
k,3 A

′′
k,3 0 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ , (5)

where

A
′′
k,i =

(
0 0
1 0

)
.

Combining the Markov chain (5) with the binary channel ob-
servation model for the ES discussed in Section 1, and de£ning
the probability of missing a pulse as pmiss, and the probability of
getting a spurious pulse as pspur , we obtain an HMM for the radar
word template as de£ned in [7] λk = (Ak,Bk, πk), where Bk is
the observation probability matrix de£ned as

Bk =

⎛
⎜⎜⎜⎜⎜⎝

1 − pspur pspur

1 − pspur pspur

pmiss 1 − pmiss

1 − pspur pspur

...
...

⎞
⎟⎟⎟⎟⎟⎠

, (6)

and the initial state probability distribution is πk ≡ (1 0 0 0 · · · )T .

3. VITERBI ALGORITHM FOR WORD EXTRACTION

Given the radar word template HMMs presented in Section 2, the
problem of extracting radar words from noisy pulse sequence is
equivalent to the problem of scoring the pulse sequence in the
Viterbi sense. This procedure is described in detail in [7]. Thus,
the word extraction algorithm involves the following steps:

1. Construction of HMM templates λk = (Ak,Bk, πk) for
each radar emitter word k.

2. Calculation of the Viterbi log-score for each word template
as described in [7].

3. The relative peaks in the Viterbi log-score correspond to
candidate starting times for radar words in the quantized
pulse sequence.
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Fig. 3. Example of the trellis path of the Viterbi algorithm.

4. By executing the Viterbi backtracking procedure as described
in [7], one can obtain the most likely distribution of individ-
ual pulse labels i.e. determine which pulses came from the
radar, which should be declared spurious, and which ones
were missing.

The generic Viterbi algorithm has a computational complex-
ity O[LM2

k ] [7], where L is the length of the quantized pulse se-
quence, and Mk is the number of states in the HMM word template
λk. For real-life radar systems, the number of states in HMM word
templates can reach several hundreds of thousands. The higher the
quantization precision of the ES (the smaller the observer clock
period Tobs), the greater the number of states Mk. However, care-
fully exploiting the structure of the problem, we can show that a
specialized Viterbi algorithm with the computational complexity
having an upper bound of O[(Np × D)(Mk × Wk)] can be de-
veloped. Here, Np � L is the number of pulses in the observed
radar sequence, and D as well as Wk, are constants discussed be-
low. Most importantly, the specialized Viterbi algorithm scales
linearly with respect to Mk.

The £rst important observation that leads to reduction of the
computational complexity of the scoring procedure is the follow-
ing: the value of scores are signi£cant, and should be evaluated
only at the positions in the quantized pulse sequence where pulses
are present. The total length of the observation sequence is L, and
it only contains Np nonzero elements. Although both Mk and L
increase with the decreasing Tobs, the number of observed pulses
Np is independent of Tobs. However, by using this technique, if
the £rst several pulses of the word are missing in the observed se-
quence, the whole word may not be found. One possible solution
to this problem is to introduce depth-D backtracking in the scoring
algorithm. In that case, D scores are calculated for each observed
pulse in a sequence. For the binary channel, the probability of
missing several pulses in a row decreases exponentially. There-
fore, D can be chosen so that this probability is driven below a
certain threshold of tolerance, and the complexity bound becomes
O[(Np × D)M2

k ].
The largest reduction in complexity of the Viterbi algorithm

is achieved by taking advantage of the highly sparse nature of the
transition probability matrix Ak. Fig. 3 (a) and (b) illustrate how
this feature can be exploited to reduce the number of paths used
by the Viterbi algorithm. Suppose we have the HMM word tem-
plate shown in Fig. 3 (a). Fig. 3 (b) shows the trellis for all possi-

ble transitions of this HMM. The rows on this diagram represent
the sequential state numbers in the HMM (1-16), and the columns
are the quantized time steps of the Viterbi algorithm (0-15). The
shortest path through the trellis (state 16 at time 11) corresponds to
the case where no pulse-splitting has occurred in the observation
sequence. The longest path (state 16 at time 15), corresponds to
the case where pulse-splitting has occurred for every single pulse.
We de£ne Wk = 15 − 11 = 4 as the maximum width of the
diagonal belt of the Viterbi trellis. In general, Wk = W (λk)
is an explicit function of the template structure, with its upper
bound being the total number of pulses in the word. Clearly, the
computational complexity of such an algorithm is no greater than
O[(Np × D)(Mk × Wk)] � O[LM2

k ].
In practice, neither the shortest, nor the longest paths through

the trellis are possible. In fact, the true radar word template has
a certain duration (see Fig. 1 (b) for example), and this duration
in the quantized domain can be evaluated using (1). Therefore,
the valid path is located between the shortest and the longest one,
and is unique for each word template. Suppose that in Fig. 3 the
quantized word duration is 13. Thus, all the paths shown by grey
dashed lines in Fig. 3 (b) are invalid, and should be eliminated.
This amounts to roughly half of all possible paths. For HMM word
templates with several hundreds of thousands of states, this is a
substantial gain in performance.

4. SIMULATION RESULTS

In this section, we present some simulation results for the radar
emitters with word structures shown in Fig. 1 and explained in
Appendix A. We have performed a number of experiments where
we generated synthetic word sequences for these emitters, and cor-
rupted them with various levels of noise. Then, we performed scor-
ing and word extraction on this data using the Viterbi algorithm as
presented in Section 3.

Fig. 4 (a) shows results for approximately 35ms of data from
the radar emitter having the word structure shown in Fig. 1 (a).
Here, Tobs = 1.1µs, and about 20% of radar pulses were missed.
The spur rate ρ =

pspur

Tobs
was set to 6000pulses/s. The top graph

of Fig. 4 (a) shows the Viterbi scores, and the bottom graph plots
the sequence of words extracted from the scores of the top graph.
The emitter words and their respective scores are color-coded so
that the words W1, W3, W5, W6, and W7 are represented, respec-
tively, by red, blue, pink, black, and green. In this experiment,
only these emitter words were detected. The scores for each word
peak sharply in the location of the start of the word in the sequence.
The extracted word sequence exactly matched the actual sequence
emitted by the radar. This particular emitter is capable of search-
ing for and tracking multiple targets in a time-multiplexed fashion.
The transmission is arranged into blocks of four sequential words,
each corresponding to either a tracking sequence or a searching
pattern. In Fig. 4 (a), the emitter was tracking one target using
a block consisting of four repetitions of the seventh word, W7-
W7-W7-W7. The subsequent block was allocated to tracking a
second target using a W1-W6-W6-W6 sequence. The next three
blocks (or 12 words) follow a different pattern used to search for
additional targets. The radar then resumes tracking the £rst target
using the W7-W7-W7-W7 block and the entire £ve-block pattern
repeats, with minor variations. This £gure shows how much infor-
mation we can obtain about the state of a potentially hostile radar
emitter simply by being able to extract and identify the words en-
coded into radar pulse sequences.
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Fig. 4. Simulation results showing Viterbi scores. (a) shows the
extracted word sequence for the radar words in Fig. 1 (a), and (b),
for the radar words in Fig. 1 (b).

Fig. 4 (b) shows results of a similar experiment performed with
17ms of data generated by the emitter having the word structure
shown in Fig. 1 (b). Although this particular radar emitter has
only 5 words, we have considered the termination character and
the dead time between segments in Fig. 1 (b), as well as an oc-
casional period of emitter silence (absence of any pulse radiation
for a known period of time), as separate words. Therefore, the
total number of processor words is equal to 8. In this example,
the radar was performing target acquisition. The extracted word
sequence matched the expectations almost exactly. The algorithm
failed to detect word W8 around 4.2ms due to some local bursts of
noise in the observation sequence, preventing the word sequencer
from making a reliable decision.

5. CONCLUSION

In this paper, we have presented a novel approach to the pulse
train analysis in Electronic Support. We have solved the dif£-
cult Electronic Warfare problem of analyzing highly structured
pulse sequences produced by Multi-Function Radar emitters with
the aim of extracting radar words, that are related to the radar
state. Currently, to the best of our knowledge, no complete so-
lution to this problem is available in the unclassi£ed radar signal
processing literature. The key element of this approach is the novel
HMM statistical model of radar word templates. We have demon-
strated promising simulation results. Due to the dynamic nature
of HMMs, the presented approach can accommodate for an even
larger class of MFRs, where the words may be ¤exible entities,
whose pulse representations may be dynamically varying and de-
pendent on the context in which they are found. The proposed ap-

proach could be used as the pulse train analysis stage of the radar
state estimation algorithm that was introduced in [4], providing a
complete solution to the radar state estimation problem.

A. APPENDIX: RADAR WORD SPECIFICATION

In Fig. 1, we show examples of word pulse structures for two dif-
ferent radar emitters, chosen for demonstration purposes. The £rst
emitter has a vocabulary of 9 words (W1-W9), all of which have
the same pulse envelope, shown in Fig. 1 (a). The envelope struc-
ture can be separated into 5 distinct sections (A through E). Sec-
tions A, C, and E are dead times of known duration, where no
pulses are radiated by the emitter. Section B is the £xed Pulse
Repetition Interval (PRI) pulse-Doppler component. The nine dis-
tinct words of the radar are distinguished by different PRIs of this
section in the pulse envelope. Finally, section D contains 12 pulses
at a nominally £xed PRI. All pulse-Doppler PRIs in section B are
< 100µs, and pulses in section D are ∼= 4µs.

The second emitter has a smaller vocabulary, including four
active words (W1-W4), and one blank word (W5) in which no
pulses are radiated for a speci£ed period of time. The words of this
radar are emitted in pairs followed by a short termination character.
Fig. 1 (b) illustrates the three distinct, £xed-length components of
the pulse sequence. The £rst component has a length of 51000
crystal clock counts (Xc ≈ 0.095µs), the second component is
50000Xc, and the termination character is 6691Xc. Depending
on the speci£ed pair of words, sections A and C may each contain
333-415 pulses, and are followed, respectively, by dead time zones
B and D of variable length. The termination character is the same
for all states of the radar; it consists of three groups of pulses – E,
G, and I, with respectively, 5, 8, and 12 £xed-PRI pulses, separated
by dead time zones of £xed durations – F, H, and J.
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