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Abstract

Methods for estimating the clutter scattering function and
detecting ground moving targets, using pulse-Doppler
surveillance radar data, are described. The imaging prob-
lem is cast as one of structured covariance estimation with
time-varying measurement models and illumination pat-
terns. An Expectation-Maximization (EM) algorithm is
derived and the computational issues arising from its use
are discussed. The detection algorithm uses the estimated
clutter statistics and a time-varying target model in a stan-
dard Generalized Likelihood Ratio Test (GLRT).

1. Introduction

In this paper we describe an estimation-theoretic
technique for determining the statistics of land clutter from
data normally associated with wide-area surveillance
radar, then show how these statistics could be used for
ground moving target detection. Our problem formulation
is consistent with the model for space-time adaptive pro-
cessing (STAP) presented in [1]. A pulse-Doppler radar
platform with multiple transmit/receive elements emits
several pulse train along an arbitrary flight path near the
region of interest. Each pulse train is assumed to be per-
fectly coherent within one coherent processing interval
(CPI), but different pulse trains are assumed noncoherent
with respect to one another. The ground region is subdi-
vided into pixels, or ground patches. The range and angle
of each ground patch with respect to the platform for each
transmitted pulse is assumed known, along with the illumi-
nation pattern. The received data for one pulse is modeled
as the sum of the returns from all of the ground patches,
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each modulated by the transmit illumination. The data
from all pulses or viewpoints is modeled in this way.
Maximum-likelihood methodology is used to estimate the
unknown scattering function.

The clutter model assumed is the constant-γ model
described by Barton [2] and others, which is appropriate
for the medium grazing angles one might encounter in
wide-area surveillance radar applications. In this model
the Earth is treated as a rough, or Lambertian, reflector, in
which the radar cross section is proportional to the sine of
the grazing angle (or the projected area of the patch as
seen from the radar platform) and the constant of propor-
tionality is the terrain-dependent parameter γ describing
the scattering effectiveness of the surface. We refer to his
function γ(n), expressed as a function of the Earth geo-
graphical coordinates, as the clutter scattering function.

The radar data are modeled as 0-mean complex
Gaussian vectors whose covariances are linear transforma-
tions of the clutter scattering function. We apply the struc-
tured covariance approach to data modeling, and the
Expectation-Maximization (EM) algorithm to the compu-
tation of the maximum-likelihood solution. This line of
thinking extends a body of work by ourselves and others in
structured covariance estimation and radar imaging to the
case in which the desired parameters are modulated by a
known spatial illumination pattern. Once the clutter model
is established, it can be used for ground moving target
detection.

2. Problem Formulation

We are interested in estimating the clutter scattering
function γ(n) of the Earth’s surface in some region of
interest. Suppose that this region is pixelized into N
ground patches. The size of the patches is commensurate
with the resolution of the radar along its highest-resolution
dimension, typically range. The physical modeling of the
patches could come from digital terrain elevation maps,

V - 5930-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



which are becoming more prevalent in radar simulations
and signal processing [3]. At each of K time instants,
k = 1 . . . K , a pulse wav eform is transmitted from an air-
borne radar platform, with a known illumination pattern.
The incident energy on patch n at time k is λnk . The
received data across multiple sensors, and perhaps across
multiple Doppler bins (depending on the radar), after pulse
compression and quadrature demodulation, is a 0-mean
complex Gaussian vector with M components denoted zk ,
given by the sum of the returns from all of the patches.
That is,

(2.1)zk ∼ CN (0, Rk)

where the covariances Rk can be written

(2.2)Rk =
N

n=1
Σ a(n, k)aH(n, k)γnλnk .

a(n, k) is the response vector, or direction vector, for the
nth patch on the kth pulse. a(n, k) represents the structural
aspects of the received signal, whereas all the physical
constants describing the transmitted and propagated
energy, including the grazing angle to each patch, are
incorporated into the model for λnk . We assume that the
pulse compression is ideal, that is, the received data can be
partitioned into range gates which decouple the data into
disjoint sets. Put another way, each Rk is block-diagonal,
with each block corresponding to one range gate. How-
ev er, the grouping or association of ground patches into
range gates varies from pulse to pulse because of the time-
varying flight path or viewpoint of the radar platform.

In more compact notation, we can write the covari-
ance Rk as

(2.3)Rk = Ak(ΓΛk)AH
k

where

(2.4)Ak = [ a(1, k) . . . a(N , k) ]  ,

(2.5)Γ = diag(γ1
. . . γN ) ,

and

(2.6)Λk = diag(λ1k
. . . λNk) .

The problem is to determine the maximum-likelihood esti-
mate of Γ based on this model.

This problem can be viewed as one of structured
covariance estimation, an area which has been well-
studied in the past twenty years and which has been
applied to radar imaging [4]. Our contribution can be
viewed as an extension of that work in the following two
ways: 1) the forward model is placed in an Earth-centered
coordinate system through precise geolocation of the plat-
form and the use of detailed geographic information, and

2) the time-varying measurement model is extended to the
active case through the inclusion of the time-varying illu-
mination term Λk . Although Λk could be incorporated
directly in the definition of Ak , reducing our estimation
problem to that of [5], making a distinction between the
role of the transmitter (Λk) and that of the receiver (Ak) is
valuable and facilitates the development of active-testing
surveillance algorithms in future research efforts.

3. EM Algorithm

We apply the Expectation-Maximization (EM) algo-
rithm [6] to the maximization of the log-likelihood for Γ,
drawing on previous success with related structured
covariance estimation algorithms. The EM algorithm for
this problem is derived by first hypothesizing a set of com-
plete data, which is related to the observed or incomplete
data through a many-to-one mapping. The complete data
is chosen so that the estimation algorithm would be trivial
were it truly available. In our case, the complete data is a
set of random variables unk which represent the observed
returns from each of the individual ground patches, not
seen through the array response transformations Ak . That
is,

(3.1)uk ∼ CN (0, ΛkΓ) .

The incomplete-data zk are related to the uk through the
many-to-one transformation

(3.2)zk = Akuk .

In each step of the EM algorithm, one begins with a cur-
rent estimate or iterate of the diagonal parameter matrix Γ.
Then the expected values of the sufficient statistics for the
complete-data log-likelihood, conditioned on the observed
data and assumed parameter values, are computed. In this
case the sufficient statistics are the squared magnitudes
|unk |2. Then, these sufficient statistics are used to find the
closed-form ML estimate for Γ, and the process is
repeated.

Use the index p to denote the iteration number. The
expected squared magnitude of unk is the squared magni-
tude of the conditional expectation, plus the variance. The
conditional expectation is given by

(3.3)E{uk | zk , Γ(p)} = Ruz(p, k)R−1
zz (p, k)zk

= ΛkΓ(p)AH
k R−1

zz (p, k)zk

where Rzz(p, k) is the covariance of zk at iteration p, and
Ruz(p, k) is the cross-covariance of uk and zk , both predi-
cated on the assumed value of Γ(p). These are given by
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(3.4)Rzz(p, k) = AkΛkΓ(p)AH
k

and

(3.5)Ruz(p, k) = ΛkΓ(p)AH
k .

The conditional covariance of uk is given by

(3.6)cov{uk | zk , Γ(p)}

= Ruu(p, k) − Ruz(p, k)R−1
zz (p, k)Rzu

= ΛkΓ − ΛkΓ(p)AH
k R−1

zz (p, k)AkΓ(p)Λk .

The sufficient statistics we seek are the squared magni-
tudes of (3.3) plus the diagonal elements of (3.6).

If one were given the |un,k |2 directly, the maximum-
likelihood estimates of the γn would be given by

(3.7)γ̂n =
1

K

K

k=1
Σ |un,k |2

λnk

or in more compact notation

(3.8)Γ̂ =
1

K

K

k=1
Σ Λ−1

k diag(ukuH
k ) .

Substituting the conditional expectations in place of the
actual squared magnitudes in (3.7) we have finally the EM
iteration given by

(3.9)Γ(p+1) = Γ(p)

+
1

K

K

k=1
Σ ΛK diag⎡

⎣
Γ(p)AH

k R−1
zz (p, k)zkzH

k R−1
zz (p, k)AkΓ(p)⎤

⎦

−
1

K

K

k=1
Σ ΛK diag⎡

⎣
Γ(p)AH

k R−1
zz (p, k)AkΓ(p)⎤

⎦
.

4. Computational Considerations

The EM algorithm as described above has very high
computational requirements and thus every effort must be
made to streamline the computations where possible. We
briefly describe some of these implementation issues here;
for more information see [8].

Each data cube can be viewed as a vector of length
LMd Ms, where L is the number of range gates, Md the
number of pulses, or Doppler bins, and Ms the number of
sensors. The partitioning of data into range gates means
that the matrices to be inverted in (3.9) are size M × M ,
where M = Md Ms; nev ertheless there are L such systems
to be inverted for each data cube.

Special attention must be paid to the organization of
the calculations to accomodate the fact that the data from

different range bins are independent, but that the grouping
of pixels into range bins varies from measurement to mea-
surement. Given some "master" ordering of the parame-
ters γ1

. . . γN , there exists some permutation Pk that
organizes the parameters into range bins, for the purpose
of computing the sufficient statistics in the EM algorithm.
Once computed, these sufficient statistics must be per-
muted back into the master ordering of the parameter vec-
tor before the sum over k can be taken in (3.9).

The central calculation of the EM algorithm is that
of finding the conditional mean and covariance of a certain
multivariate Gaussian distribution, given the data and a
prior mean and covariance. Numerically stable and effi-
cient data-domain algorithms, based on the solution of the
least-squares problem

(4.1)y ≈ AkΓ
1
2 x

have been derived and implemented. These methods avoid
the full calculation of the matrix Rk at each iteration, and
are based on either the QR or the singular value decompo-
sition of AkΓ

1
2 , depending on the matrix dimensions and

condition.

The calculation of the response vector a(n, k) is a
significant factor in the overall computation. We hav e
implemented a table look-up method, in which the spatial
and Dopper response vectors are pre-computed on a fine
grid, and their Kronecker products are computed "on the
fly" as needed to fill out the model matrices Ak .

The EM algorithm has been known to exhibit slow
convergence in high-dimensional problems, and the pre-
sent case is no exception. We hav e implemented the
ordered subsets (OS) EM algorithm [7] as an alternative to
the standard EM algorithm. The speed-up factor obtained
is roughly equal to the number of subsets used in the OS-
EM algorithm, a result consistent with that of other
reported applications.

5. Ground Moving Target Detection

Once the clutter scattering function is known, it can
be used for the detection of ground moving targets. Sup-
pose that there exists a hypothesized target track on the
ground; this track could be generated by a "track-before-
detect" system, beyond the scope of this paper. The target
appears in each of the datacubes through a response vector
ak which is function of its instantaneous position and
velocity relative to that of the radar platform.

Let Rk be the clutter covariance matrix for datacube
k, confined to the range bin containing the hypothesized
target at time k. Let ak be the target response vector. The
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target is assumed to be fluctuating and has an unknown
deterministic amplitude bk for all k = 1 . . . K . The
hypothesis testing problem is

H0: zk ∼ CN (0, Rk) k = 1 . . . K

H1: zk ∼ CN (bkak , Rk) k = 1 . . . K

Since the target amplitude is unknown, this is a
composite hypothesis testing problem and we adopt the
Generalized Likelihood Ratio Test (GLRT) approach,
determining the maximum-likelihood (ML) estimate of bk

under H1 and substituting it back into the likelihood func-
tion. We hav e that

(5.1)b̂k,ML =
aH

k R−1
k zk

aH
k R−1

k ak

which leads to a test statistic of the form

(5.2)t =
K

k=1
Σ |aH

k R−1
k zk |2

aH
k R−1

k ak

.

Under hypothesis H0 the test statistic is subject a central
χ2 distribution with K complex degrees of freedom, and
under H1 it is subject to non-central χ2 distribution, with
non-centrality paper equal to the signal-to-noise ratio
(SNR)

(5.3)ρ =
K

k=1
Σ |bk |2aH

k R−1
k ak .

The probabilities of false alarm and detection for such a
detector are well-known.

We recognize that the use of estimated Rk in this
detection problem will inevitably reduce detector perfor-
mance, as is the case in all adaptive detectors. The perfor-
mance of this "clairvoyant" detector provides an upper
bound on the performance of all such adaptive detectors.
A complete analysis of the detection performance with the
estimated Rk appears intractable. The important point
here is that the clutter model allows us to carry out the
adaptive detection in situations where 1) the clutter is het-
erogeneous and therefore there is no "secondary data"
from other range bins to estimate Rk , and 2) the clutter
covariance can be estimated from data at other platform
positions and orientations.

6. Summary and Conclusions

A method for estimating the ground scattering func-
tion using wide-area surveillance radar data has been pre-
sented. The imaging problem was cast as one of struc-
tured covariance estimation with time-varying

measurement models and illumination patterns. The EM
algorithm was derived and implemented, and some of the
computational issues arising from its implementation were
discussed. Once the clutter scattering function is estab-
lished, it can be incorporated into an algorithm for ground
moving target detection, which uses data cubes collected
over a period of time from a number of different platform
positions and orientations.

The algorithms described here were developed as
part of a large project in Knowledge Aided Sensor Signal
Processing and Expert Reasoning (KASSPER), an ongo-
ing initiative of the U.S. Defense Advanced Research Pro-
jects Agency (DARPA). Space does not allow us to
include here details on the implementation and simulation
results. For more information see [8].
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