
IMAGE ANALYSIS AND COMPUTER VISION FOR UNDERGRADUATES

Andrea Cavallaro

Multimedia and Vision Laboratory

Queen Mary, University of London

Mile End Road, London E1 4NS (United Kingdom)

Email: andrea.cavallaro@elec.qmul.ac.uk

ABSTRACT

Real hands-on experience can help students gain a better

understanding of theoretical problems in image analysis and

computer vision and allows them to put in practice and improve

their knowledge in digital signal processing, mathematics,

statistics, perception and psychophysics. However, important

efforts are necessary to enable students to develop a computer

vision application because of the lack of extensively tested and

well documented software platforms.

In this paper, we describe our experience with an open source

library addressed to researchers and developers in computer

vision, the OpenCV library, its limits when used by students,

and how we adapted it for teaching purposes by producing a set

of appropriate tutorials. These tutorials help the students reduce

the average time for installation and setup from 1 week to 4

hours and help them design an end-to-end image analysis and

computer vision project. Finally, we discuss our experience of

using this framework for undergraduate as well postgraduate

student projects.

1. INTRODUCTION

Video-based systems are becoming an important part of many

applications around us, such as automated video surveillance,

video-based human machine interfaces, and immersive gaming.

Such a development has created a market demand for students

trained in this area and in fact an increasing number of

universities are proposing courses in image analysis and

computer vision.

Although it is easy to generate interest in students while

teaching these subjects, it is much more difficult to help them

have a practical experience in the design of a computer vision

application by means of a project. Computer vision projects

allow students to put in practice and develop their knowledge in

mathematics, statistics, digital signal processing, perception and

psychophysics. Although it is possible to implement MATLAB

laboratory sessions for low-level image analysis functions, it is

much more difficult to allow the students to design and to

implement a real-world, real-time application such as object

detection and recognition, video-based human-computer

interfaces, mixed reality, or object tracking.

We experienced some problems in letting students start an

undergraduate computer vision project from scratch or with

software borrowed from our research projects: it took them too

long to get started, thus reducing the time available to really

learn about computer vision. The ideal solution to this problem

would have been a well commented software platform and a

library providing all the basic data structures and their operators,

basic functions or classes for reading data from a video camera

or from a file, displaying a video or writing a video file,

functions for computing the optical flow, filters for tracking and

edge detection, and so on, as well as more advanced

functionalities to demonstrate the capabilities of the library to

the students. The Intel OpenCV library [1] appeared to be the

best candidate for such a platform. However, we realized that the

software was not adequately commented and documented for

our purpose (the library is in fact addressed to researchers and

professionals, not to undergraduate students) and the time taken

by the average student to correctly install the software package,

additional software required, and to understand how to use it was

still prohibitively high.

Given the large number of useful functions of the OpenCV

library, we decided to improve the documentation in order to

enable undergraduate students to use the potentiality of this

library for their projects. This resulted in three main documents

that we now use to guide the students in the installation of the

OpenCV software, the additional packages needed to receive

data from a video camera and a tutorial on how to write a simple

computer vision application. We will discuss these documents

and the way we organize the projects in Section 2. Section 3

reports some examples of projects, whose reports in turn become

part of the library documentation. In Section 4 we evaluate our

experience with the platform. Finally, in Section 5 we draw the

conclusions.

2. STUDENTS’ PROJECTS WITH OPENCV

We describe here the structure of the image analysis and

computer vision project module and the documents containing

tutorials that made the OpenCV library accessible to

undergraduate students. The objective of this module is a design,

development, or research project during which students produce

a real-time application. The project enables students to

appreciate the components of a computer vision system, to

develop their skills in signal processing and in C and C++

programming. In addition to this, the module gives students

experience of managing their own time to complete a project and

V - 5770-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

of developing their communication skills, both written and oral,

to a standard expected by industry of a new graduate. The

outputs of the project are a report, a demonstration, a

presentation, and an oral examination. The project normally

occupies about 240 hours, spread over 2 semesters, and can take

the form of an individual or a group project. In the case of a

group project, the aim is also to give students experience in

working as a team, communicate among each others and manage

a more complex project. In fact, individual projects usually start

from the information available in the tutorials, whereas group

projects (in general 6 people) start from already existing projects

and build up more complex applications. In such a way, students

also appreciate the importance of good commented and

documented software.

Students are first given an introductory lecture on the

objective of the project and the OpenCV library. Then they are

given three tutorials produced to help them start. The first

tutorial is the installation guide, which helps install the OpenCV

library for use with Visual Studio and Direct X SDK. The

second is a guide to creating the workspace and project for

OpenCV. The final guide shows how to write a real-time

application, a background subtraction algorithm using the library

and a web camera. Thanks to the three tutorials, the average

undergraduate student is able to have his/her first real-time

computer vision program running in about 4 hours. In addition to

the tutorial and the OpenCV documentation, students have also

access to previous project reports which complete and enrich the

basic documentation of the library.

3. PROJECT EXAMPLES

In this section we describe and discuss examples of projects

developed by the undergraduate students based on the

framework described in Section 2. The projects are based on

real-world applications, such as video surveillance, video

production (e.g., weather forecast programs with the presenter

superimposed on a map), interactive and immersive games.

The first example of project is object detection based on

background subtraction. Background subtraction allows one to

detect moving objects using a static camera. This is a simple and

effective example of real-time application where students

appreciate and learn about problems caused by different lighting

conditions, camera noise, and shadows. Starting from a simple

thresholded pixel-by-pixel image difference (Figure 1), the

students understand how to use morphological and low-pass

filters [2,3], re-sampling and statistical analysis [4]. In addition

to the above, they learn how to use statistical approaches for the

generation of a background frame.

The completion of the previous example enables the

students to develop other applications, such as object tracking

(Figure 2). Working on object tracking, students understand the

importance of feature representations and of color space

conversions, the use of distance functions in the feature space,

and different tracking algorithms. Furthermore, they learn how

to disambiguate between similar objects by choosing the

appropriate set of features to describe them. In particular, they

experience several histogram comparison functions, such as the
2, the correlation methods, and the Bhattacharyya distance.

They learn and test the difference between color spaces and the

properties of photometric invariant color features [5].

 (a) (b) (c)

(d) (e) (f)

Figure 1. Example of thresholded background subtraction

result (a) undergoing different morphological filtering: (b)

single erosion, (c) recursive erosion. (d) After down-

sampling, (e) after down-sampling followed by up-sampling.

(f) After statistical analysis.

Figure 2. Example of object detection and tracking based on

background subtraction and color histogram distance.

This allows them to design algorithms that differentiate objects

from their shadows.

Another application enabled by the results of background

subtraction is mixed reality (Figure 3). This application allows

students to understand how to write algorithms for video

production and how to solve different problems related to

ambient lighting and to the composition of several inputs.

Other projects that do not necessarily require the use of

background subtraction are based on the design of perceptual

human-computer interfaces (Figure 4). Figure 4 (a) shows an

example of a remote control simulated by tracking hand

gestures. Here, the tracking is based on a model of the hand

defined by color and edge information. Moreover, face detection

[6] is used to disambiguate between the hands and the face. The

project shown in Figure 4 (b), called the virtual artist, allows

one to draw lines on the screen without using any device. In both

applications, students learn how to define and use a model of an

object and how to track it over time. A particular aspect covered

when developing these applications is the analysis of the

V - 578

➡ ➡

 (a) (b)

(c) (d)

Figure 3 Example of real-time mixed reality application. (a)

Background frame learned and updated over time; (b)

current frame; (c) new background frame (synthetic or

real); (d) object-based scene composition.

precision of the tracking. Students evaluate the results in terms

of user satisfaction and in terms of objective metrics (accuracy).

We conclude this section presenting two applications that

are usually very motivating for students and enable them to use

their creativity, namely the design of special visual effects and

of video animations. Special visual effects can be generated

based on background subtraction and on the use of video object

memory (Figure 5 (a)). Video animation is based on tracking:

moving objects can control the movement of avatars or simple

symbols (Figure 5 (b)).

4. EVALUATION AND ASSESSMENT

4.1. Learning outcomes

Learning outcomes for the image analysis and computer vision

projects can be divided into two groups, namely subject specific

skills and transferable skills. In terms of learning outcomes in

subject specific skills, students learn to employ signal

processing, mathematical and software 'tools' to a familiar or

unfamiliar situation. In particular, we experienced that the

opportunity to develop ‘good looking’ applications, which hide a

good amount of theoretical studies and concepts, helped

motivating the students. Interestingly, this aspect also motivated

some of the students to go far beyond their project specifications

and to learn more on the subject. Furthermore, the possibility of

developing real-time computer vision applications seems to be

very rewarding for the students and at the same time allows

them to have fun (see examples in Section 3).

In terms of learning outcomes in transferable skills,

students learn to manage time effectively and produce written

progress reports and a final report on time. In addition to the

(a)

(b)

Figure 4 Examples of perceptual human-computer

interaction. (a) Video-based remote control: a vertical

movement of the hand changes channel (Up: next channel,

down: previous channel; Left (right) decrease (increase) the

volume). (b) Virtual artist: with the movement of the hands

the student can draw in different colors that can be selected

in the corners of the image.

experience with signal processing and computer vision, the

projects allow the students to appreciate the importance of

writing software that can be easily reused. Students working in

group build their work on top of other students’ work and

therefore appreciate the problems one encounters when software

is not well commented and documented.

4.1. Assessment

OpenCV is becoming widely used by the research community.

Since its release as freeware, the OpenCV library has been

downloaded over half a million times and the official yahoo

group has over 5000 members. However, when we joined the

group, we found no answers to our queries and we received

ourselves a large number of questions. One of the reasons for

this is that the OpenCV library is aimed at users with an in-depth

understanding of computer vision. Furthermore, there is little

documentary support for the functions.

The creation of the tutorials and the use of students’ report

as additional documentation to the library facilitate the use of

OpenCV. Although students find it hard to start their image

analysis and computer vision project, they usually get

V - 579

➡ ➡

 (a)

 (b)

Figure 5 (a) Example of special visual effects generated with

background subtraction and the use of object memory. (b)

Example of object animation based on tracking. The motion

of the tracked people (left) controls the movement of symbols

(right)

enthusiastic when they succeed in showing to their peers what

they were able to design and with a common personal computer

and a web camera. This in turn generates interest for the subject

in other students and could also be used as part of universities

strategies for widening participation. For example, a group of

students found it very rewarding to present their work at the

University Open Day and their demos had a very good appeal to

high school students.

An important advantage of adopting OpenCV for teaching

purposes is that it is open source. This not only reduces costs but

also allows the increasing number of students with their own

computer and a web cam to work at home and to continue using

the library after the project.

In addition to the above, the platform is very useful for

providing the students with practical examples in class during

the lectures to support the theoretical part of the course.

To conclude, we report here some feedbacks received from

the students after completing their projects:

“This project had the “excitement” factor, being able to

work with live camera feeds and manipulating the input to

achieve desired effects as well as for fill our goals.”

“I feel a little extra background information on OpenCV

could have helped us achieve a little more.”

“Although the project was a learning curve for me it was

also a fun and enjoyable at the same time.”

“I think it was well worth the effort, and we were all very

pleased with what we had produced.”

5. CONCLUSIONS

Laboratory hands-on experiments and projects are a very

effective way to learn subjects such as signal processing and

computer vision. We presented the framework that we developed

and we use to enhance the quality of learning in image analysis

and computer vision at undergraduate level based on the

OpenCV library. Providing additional documentation to the

library and project examples opened a window of opportunity

for student projects that was not available at an undergraduate

level.

All the projects produce a user guide and functional

documentation in order to complement and enhance the

functions available in the OpenCV library. The framework and

the documentation are continuously updated with new projects

and additional tutorials are provided as the number of

applications increases.

6. ACKNOWLEDGMENTS

We would like to acknowledge the effort of the students Navin

Kerai, Bhavin Padhiar, Lad Ketanbhai, Randip Singh Bahra,

Muhammad Razwan Aslam, and Khalid Saeed Allahawala who

helped set up the framework described in this paper.

7. REFERENCES

[1] G. Bradski, “The OpenCV Library”, Dr. Dobb’s Journal

November 2000, Computer Security, 2000.

[2] A. K. Jain, Fundamentals of Digital Image Processing,

Prentice Hall, 1988.

[3] A. Bovik, Handbook of Image and Video Processing,

Academic Press, 2000.

[4] A. Cavallaro, T. Ebrahimi, "Interaction between high-level

and low-level image analysis for semantic video object

extraction", Journal of Applied Signal Processing, No. 6, pp.

786-797 June 2004.

[5] E. Salvador, A. Cavallaro, T. Ebrahimi, "Shadow

identification and classification using invariant color models", in

Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, Salt Lake City (Utah-USA), pp 1545-1548, 2001.

[6] P. Viola and M. Jones, “Rapid object detection using a

boosted cascade of simple features”, in Proc. of IEEE Int. Conf.

on Computer Vision and Pattern Recognition, 2001.

V - 580

➡ ➠

